skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Spatially Allocating Life Cycle Water Use for US Coal‐Fired Electricity across Producers, Generators, and Consumers
There are water consequences across every life cycle stage of coal‐fired electricity consumption, from production and processing to combustion, which have not been studied with regional specificity. There is often a spatial decoupling between where coal is produced and processed versus where it is combusted for power generation, complicating any analysis to estimate the life cycle water implications of electricity consumption. Furthermore, electricity generated by coal‐fired power plants can be consumed within its own balancing authority or exported to another balancing authority. This analysis spatially resolves the water consumed and water withdrawn for coal mining, coal preparation, and power plant cooling from 1) where the coal is mined to where the coal is burned for power production and 2) where the electricity is generated to where the electricity is consumed. Although the largest portion of coal consumed came from the Northern Great Plains province, coal from this region consumes the least amount of water for mining and preparation compared with other provinces. Water withdrawals for cooling power plants within each balancing authority are driven by cooling technology. Due to the interconnected grid, there can be differences between attributing water footprint at the producer level versus the consumer level.  more » « less
Award ID(s):
1845931
PAR ID:
10200623
Author(s) / Creator(s):
 ;  ;  ;  
Publisher / Repository:
Wiley Blackwell (John Wiley & Sons)
Date Published:
Journal Name:
Energy Technology
Volume:
8
Issue:
11
ISSN:
2194-4288
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract Annual carbon dioxide (CO2) emissions from the U.S. power sector decreased 24% from 2000 to 2018, while carbon intensity (CO2per unit of electricity generated) declined by 34%. These reductions have been attributed in part to a shift from coal to natural gas, as gas‐fired plants emit roughly half the CO2emissions as coal plants. To date, no analysis has looked at the coal‐to‐gas shift from the perspective of commitment accounting—the cumulative future CO2emissions expected from power infrastructure. We estimate that between 2000 and 2018, committed emissions in the U.S. power sector decreased 12% (six GtCO2), from 49 to 43 GtCO2, assuming average generator lifetimes and capacity factors. Taking into consideration methane leakage during the life cycle of coal and gas plants, this decrease in committed emissions is further offset (e.g., assuming a 3% leakage rate, there is effectively no reduction at all). Thus, although annual emissions have fallen, cumulative future emissions will not be substantially lower unless existing coal and gas plants operate at significantly lower rates than they have historically. Moreover, our estimates of committed emissions for U.S. coal and gas plants finds steep reductions in plant use and/or early retirements are already needed for the country to meet its targets under the Paris climate agreement—even if no new fossil capacity is added. 
    more » « less
  2. Abstract Water consumed by power plants is transferred virtually from producers to consumers on the electric grid. This network of virtual transfers varies spatially and temporally on a sub-annual scale. In this study, we focused on cooling water consumed by thermoelectric power plants and water evaporated from hydropower reservoirs. We analyzed blue and grey virtual water flows between balancing authorities in the United States electric grid from 2016 to 2021. Transfers were calculated using thermoelectric water consumption volumes reported in Form EIA-923, power plant data from Form EIA-860, water consumption factors from literature, and electricity transfer data from Form EIA-930. The results indicate that virtual water transfers follow seasonal trends. Virtual blue water transfers are dominated by evaporation from hydropower reservoirs in high evaporation regions and peak around November. Virtual grey watertransfers reach a maximum peak during the summer months and a smaller peak during the winter. Notable virtual blue water transfers occur between Arizona and California as well as surrounding regions in the Southwest. Virtual grey water transfers are greatest in the Eastern United States where older, once-through cooling systems are still in operation. Understanding the spatial and temporal transfer of water resources has important policy, water management, and equity implications for understanding burden shifts between regions. 
    more » « less
  3. null (Ed.)
    Massive data center (DC) energy demands lead to water consumption concerns. This study quantifies on-site and off-site DC water consumption and its holistic impact on regional water availability. This study proposes a new DC sustainability metrics, Water Scarcity Usage Effectiveness (WSUE), that captures the holistic impacts of water consumption on regional water availability by considering electricity and water source locations and their associated water scarcity. We examine the water consumption of various DC cooling systems by tracking on-site water consumption along with the direct and indirect water transfers associated with electricity transmission at the contiguous U.S. balancing authority (BA) level. This study then applies the WSUE metric for different DC cooling systems and locations to compare the holistic water stress impact by large on-site water consuming systems (e.g., via cooling towers) versus systems with higher electrical consumption and lower on-site water consumption such as the conventional use of computer room air conditioner (CRAC) units. Results suggest that WSUE is strongly dependent on location, and a water-intensive cooling solution could result in a lower WSUE than a solution requiring no or less on-site water consumption. The use of the WSUE metric aids in DC siting decisions and DC cooling system design from a sustainability point of view. 
    more » « less
  4. Coal has long history in Ohio and across the Appalachian region (Crowell 1995History of Coal-Mining Industry in Ohio State of Ohio, Department of Natural Resources, Division of Geological survey). The industry has had a major impact on the communities in various ways from underground mining, surface mining, and coal- fired electricity generation (Keenan and Robert 2010An Ecopolitical System of Global Significance” in “Always A River: The Ohio River and the American Experience; Lobao et al 2016Rural Sociol.81343–86). As the U.S. moves away from coal, the mines and coal-fired power plants close, creating significant economic hardships for the communities that relied on the coal industry (Blaackeret al2012Organ. Environ.25385–401; Grubert 2012Energy Policy44174–84; Grubert 2020Science3701171–3; Haggertyet al2018Resour. Policy5769–80). Yet even after the industry has left, the residents of many towns still felt connected to coal and still consider themselves a ‘coal community’. Local history and industry messaging help re- enforce this idea, but those factors are part of a larger phenomenon around the growing and shifting image of coal (Bell and York 2010Rural Sociol.75111–43; Lewin 2019Soc. Probl.6651–68). This article examines how the image of coal has grown over time to be associated with many different values that coal community members identify with and want to attach to themselves. From hardworking coal miners, to town-defining power plant smokestacks, to hunting and fishing on reclaimed coal lands. The image of coal has come to represent a myriad of things that still represent these coal communities allowing them to interact with the image of coal long after the industry and tangible impact of coal has left. In analyzing interview data with fifty coal employees, local leaders and town residents from across four coal communities across southeast Ohio and northern West Virginia at varying stages of coal transition, this article uses concepts from postmodern social theory to illustrate the nature of how the meanings and identity of coal towns persist even after there is no longer coal. The findings advance our understanding of how coal-dependent communities continue to grapple with the societal transition away from coal energy and provide context for addressing the coal transition beyond economic factors. 
    more » « less
  5. Abstract Although hydropower produces a relatively small portion of the electricity we use in the United States, it is a flexible and dispatchable resource that serves various critical functions for managing the electricity grid. Climate-induced changes to water availability will affect future hydropower production, and such changes could impact how the areas where the supply and demand of electricity are balanced, called balancing authority areas, are able to meet decarbonization goals. We calculate hydroclimate risk to hydropower at the balancing authority scale, which is previously underexplored in the literature and has real implications for decarbonization and resilience-building. Our results show that, by 2050, most balancing authority areas could experience significant changes in water availability in areas where they have hydropower. Balancing areas facing the greatest changes are located in diverse geographic areas, not just the Western and Northwestern United States, and vary in hydropower generation capacity. The range of projected changes experienced within each balancing area could exacerbate or offset existing hydropower generation deficits. As power producers and managers undertake increasing regional cooperation to account for introducing more variable renewable energy into the grid, analysis of risk at this regional scale will become increasingly salient. 
    more » « less