skip to main content


Title: Flood Detection Framework Fusing The Physical Sensing & Social Sensing
Award ID(s):
1640625
NSF-PAR ID:
10200895
Author(s) / Creator(s):
; ; ;
Date Published:
Journal Name:
2020 IEEE International Conference on Smart Computing (SMARTCOMP)
Page Range / eLocation ID:
374 to 379
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Human mobility modeling has many applications in location-based services, mobile networking, city management, and epidemiology. Previous sensing approaches for human mobility are mainly categorized into two types: stationary sensing systems (e.g., surveillance cameras and toll booths) and mobile sensing systems (e.g., smartphone apps and vehicle tracking devices). However, stationary sensing systems only provide mobility information of human in limited coverage (e.g., camera-equipped roads) and mobile sensing systems only capture a limited number of people (e.g., people using a particular smartphone app). In this work, we design a novel system Mohen to model human mobility with a heterogeneous sensing system. The key novelty of Mohen is to fundamentally extend the sensing coverage of a large-scale stationary sensing system with a small-scale sensing system. Based on the evaluation on data from real-world urban sensing systems, our system outperforms them by 35% and achieves a competitive result to an Oracle method.

     
    more » « less
  2. Quorum sensing is described as a widespread cell density-dependent signaling mechanism in bacteria. Groups of cells coordinate gene expression by secreting and responding to diffusible signal molecules. Theory, however, predicts that individual cells may short-circuit this mechanism by directly responding to the signals they produce irrespective of cell density. In this study, we characterize this self-sensing effect in the acyl-homoserine lactone quorum sensing system of Pseudomonas aeruginosa . We show that antiactivators, a set of proteins known to affect signal sensitivity, function to prevent self-sensing. Measuring quorum-sensing gene expression in individual cells at very low densities, we find that successive deletion of antiactivator genes qteE and qslA produces a bimodal response pattern, in which increasing proportions of constitutively induced cells coexist with uninduced cells. Comparing responses of signal-proficient and -deficient cells in cocultures, we find that signal-proficient cells show a much higher response in the antiactivator mutant background but not in the wild-type background. Our results experimentally demonstrate the antiactivator-dependent transition from group- to self-sensing in the quorum-sensing circuitry of P. aeruginosa . Taken together, these findings extend our understanding of the functional capacity of quorum sensing. They highlight the functional significance of antiactivators in the maintenance of group-level signaling and experimentally prove long-standing theoretical predictions. 
    more » « less
  3. This paper presents examples of high-speed 3D optical sensing for research and applications in the manufacturing community. Specifically, this paper will focus on the fringe projection technique as a special technology that can be extremely beneficial to manufacturing applications, given its merits of simultaneous high-speed and high-accuracy 3D surface measurements. This paper will introduce the basic principles of 3D optical sensing based on the fringe projection technique as well as the enabled manufacturing research applications, including both in-situ/in-process monitoring and post-process quality assurance. 
    more » « less