skip to main content


Title: Low Melting Temperature of Anhydrous Mantle Materials at the Core‐Mantle Boundary
Abstract

One of the central challenges in accurately estimating the mantle melting temperature is the sensitivity of the probe for detecting a small amount of melt at the solidus. To address this, we used a multichannel collimator to enhance the diffuse X‐ray scattering from a small amount of melt and probed an eutectic pyrolitic composition to increase the amount of melt at the solidus. Our in situ detection of diffuse scattering from the pyrolitic melt determined an anhydrous melting temperature of 3,302 ± 100 K at 119 ± 6 GPa and 3,430 ± 130 K at the core‐mantle boundary (CMB) conditions, as the upper bound temperature. Our CMB temperature is approximately 700 K lower than the previous estimates, implying much faster secular cooling and higher concentrations of S, C, O, and/or H in the region, and nonlinear, advocating the basal magma ocean hypothesis.

 
more » « less
Award ID(s):
1725094
NSF-PAR ID:
10455417
Author(s) / Creator(s):
 ;  ;  ;  ;  ;  
Publisher / Repository:
DOI PREFIX: 10.1029
Date Published:
Journal Name:
Geophysical Research Letters
Volume:
47
Issue:
20
ISSN:
0094-8276
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    High pressure and temperature experiments were carried out on the oxide mixtures corresponding to the bridgmanite stoichiometry under the hydrous shallow lower mantle conditions (24–25 GPa and 1673–1873 K with 5–10 wt. % of water in the starting material). Oxide mixtures investigated correspond to MgSiO3, (Mg, Fe)SiO3, (Mg, Al, Si)O3, and (Mg, Fe, Al, Si)O3. Melting was observed in all runs. Partitioning of various elements, including Mg, Fe, Si, and H is investigated. Melting under hydrous lower mantle conditions leads to increased (Mg + Fe)O/SiO2in the melt compared to the residual solids. The residual solids often contain a large amount of stishovite, and the melt contains higher (Mg,Fe)O/SiO2ratio than the initial material. (Mg + Fe)O‐rich hydrous melt could explain the low‐velocity anomalies observed in the shallow lower mantle and a large amount of stishovite in the residual solid may be responsible for the scattering of seismic waves in the mid‐lower mantle and may explain the “stishovite paradox. Since stishovite‐rich materials are formed only when silica‐rich source rock (MORB) is melted (not a typical peridotitic rock [bulk silicate Earth]), seismic scattering in the lower mantle provides a clue on the circulation of subducted MORB materials. To estimate hydrogen content, we use a new method of estimating the water content of unquenchable melts, and also propose a new interpretation of the significance of superhydrous phase B inclusions in bridgmanite. The results provide revised values of water partitioning between solid minerals and hydrous melts that are substantially higher than previous estimates.

     
    more » « less
  2. Abstract

    At nearly 2,900‐km depth, the core‐mantle boundary (CMB) represents the largest density increase within the Earth going from a rocky mantle into an iron‐alloy core. This compositional change sets up steep temperature gradients, which in turn influences mantle flow, structure, and seismic velocities. Here we resolve the thermodynamic parameters of (Mg,Fe)O and compute the melting phase relations of the MgO‐FeO binary system at CMB conditions. Based on this phase diagram, we revisit iron infiltration into solid ferropericlase along the CMB by morphological instability and find that the length scale of infiltration is comparable with the high electrical conductivity layer inferred from core nutations. We also compute the (Mg,Fe)O‐SiO2pseudo‐binary system and find that the solidus melting temperatures near the CMB decrease with FeO and SiO2content, becoming potentially important for ultralow velocity zones. Therefore, an ultralow velocity zone composed of solid‐state bridgmanite and ferropericlase may be relatively enriched in MgO and depleted in SiO2and FeO along a hot CMB.

     
    more » « less
  3. Deeply subducted carbonates likely cause low-degree melting of the upper mantle and thus play an important role in the deep carbon cycle. However, direct seismic detection of carbonate-induced partial melts in the Earth’s interior is hindered by our poor knowledge on the elastic properties of carbonate melts. Here we report the first experimentally determined sound velocity and density data on dolomite melt up to 5.9 GPa and 2046 K by in-situ ultrasonic and sink-float techniques, respectively, as well as first-principles molecular dynamics simulations of dolomite melt up to 16 GPa and 3000 K. Using our new elasticity data, the calculated V P /V S ratio of the deep upper mantle (∼180–330 km) with a small amount of carbonate-rich melt provides a natural explanation for the elevated V P /V S ratio of the upper mantle from global seismic observations, supporting the pervasive presence of a low-degree carbonate-rich partial melt (∼0.05%) that is consistent with the volatile-induced or redox-regulated initial melting in the upper mantle as argued by petrologic studies. This carbonate-rich partial melt region implies a global average carbon (C) concentration of 80–140 ppm. by weight in the deep upper mantle source region, consistent with the mantle carbon content determined from geochemical studies. 
    more » « less
  4. Abstract

    The accessory minerals rutile and apatite are rare or absent in the convecting upper mantle but occur in shallow, cooler, metasomatized continental lithospheric mantle (CLM) where they serve as carrier phases for the trace elements Ta (in rutile) and Th (in apatite). Because both minerals crystallize near‐solidus and are eliminated early during partial mantle melting, the relative abundances of rutile and apatite should control the Ta and Th abundances of mantle melts and provide a means of identifying the involvement of rutile‐ and/or apatite‐bearing metasomatized CLM in mafic continental magmatism. As a test, we investigated published Ta and Th abundances data from ~2,000 whole‐rock samples of mafic to intermediate composition, Cenozoic volcanic rocks in southwestern North America. Roughly half of the samples have Ta/Th values similar to those of island arc volcanic rocks (<0.2) or ocean island and mid‐ocean ridge basalts (>0.6). The remaining samples have intermediate and variable Ta/Th values between 0.2 and 0.6, independent of specific indices of crustal interaction (e.g., wt% P2O5/wt% K2O). We interpret the intermediate Ta/Th rocks as the products of direct melting of, or of extensive melt‐rock interaction with, rutile‐ and/or apatite‐bearing CLM. Intermediate Ta/Th rocks also have uniformly high87Sr/86Sr (0.706 to 0.708) compared to oceanic basalts that, unlike their Nd isotopic compositions, do not covary with lithospheric age. These observations are consistent with widespread metasomatism of the CLM by Sr‐rich, Nd‐poor, aqueous fluids generated by dehydration of oceanic lithosphere, and its overlying tectonic mélange during early Cenozoic subduction beneath southwestern North America.

     
    more » « less
  5. SUMMARY

    Along age-progressive hotspot volcano chains, the emplacement rate of igneous material varies through time. Time-series analysis of changing emplacement rates at a range of hotspots finds that these rates vary regularly at periods of a few to several tens of millions of years, indicative of changing melt production within underlying mantle plumes. Many hotspots exhibit at least one period between ∼2 and 10 Myr, consistent with several proposed mechanisms for changing near-surface plume flux, and thus melting rate, such as small-scale convection, solitary waves and instability formation in tilted plume conduits. Here, we focus on quantifying instability growth within plumes tilted by overlying plate motion. Previous studies using fluids with constant or temperature-dependent viscosity suggest that such instabilities should not form under mantle conditions. To test this assertion, we use a modified version of the finite element code ASPECT to simulate 400 Myr of evolution of a whole-depth mantle plume rising through the transition zone and spreading beneath a moving plate. In a 2-D spherical shell geometry, ASPECT solves the conservation equations for a compressible mantle with a thermodynamically consistent treatment of phase changes in the mantle transition zone and subject to either a temperature- and depth-dependent linear rheology or a temperature-, depth- and strain-rate dependent non-linear rheology. Additionally, we examine plume evolution in a mantle subject to a range of Clapeyron slopes for the 410 km (1–4 MPa K–1) phase transitions. Results suggest that plume conduits tilted by >67° become unstable and develop instabilities that lead to initial pulses in the transition zone followed by repeated plume pulsing in the uppermost mantle. In these cases, pulse size and frequency depend strongly on the viscosity ratio between the plume and ambient upper mantle. Based upon our results and comparison with other studies, we find that the range of statistically significant periods of plume pulsing in our models (∼2–7 Myr), the predicted increase in melt flux due to each pulse (3.8–26 × 10−5 km3 km−1 yr−1), and the time estimated for a plume to tilt beyond 67° in the upper mantle (10–50 Myr) are consistent with observations at numerous hotspot tracks across the globe. We suggest that pulsing due to destabilization of tilted plume conduits may be one of several mechanisms responsible for modulating the melting rate of mantle plumes as they spread beneath the moving lithosphere.

     
    more » « less