Recently, the use of bottom-TJ geometry in LEDs, which achieves N-polar-like alignment of polarization fields in conventional metal-polar orientations, has enabled enhancements in LED performance due to improved injection efficiency. Here, we elucidate the root causes behind the enhanced injection efficiency by employing mature laser diode structures with optimized heterojunction GaN/In0.17Ga0.83N/GaN TJs and UID GaN spacers to separate the optical mode from the heavily doped absorbing p-cladding regions. In such laser structures, polarization offsets at the electron blocking layer, spacer, and quantum barrier interfaces play discernable roles in carrier transport. By comparing a top-TJ structure to a bottom-TJ structure, and correlating features in the electroluminescence, capacitance-voltage, and current-voltage characteristics to unique signatures of the N- and Ga-polar polarization heterointerfaces in energy band diagram simulations, we identify that improved hole injection at low currents, and improved electron blocking at high currents, leads to higher injection efficiency and higher output power for the bottom-TJ device throughout 5 orders of current density (0.015–1000 A/cm2). Moreover, even with the addition of a UID GaN spacer, differential resistances are state-of-the-art, below 7 × 10−4Ωcm2. These results highlight the virtues of the bottom-TJ geometry for use in high-efficiency laser diodes.
In this paper, we demonstrate a novel approach utilizing tunnel junction (TJ) to realize GaN-based distributed feedback (DFB) laser diodes (LDs). Thanks to the use of the TJ the top metal contact is moved to the side of the ridge and the DFB grating is placed directly on top of the ridge. The high refractive index contrast between air and GaN, together with the high overlap of optical mode with the grating, provides a high coupling coefficient. The demonstrated DFB LD operates at λ=450.15 nm with a side mode suppression ratio higher than 35dB. The results are compared to a standard Fabry-Perot LD.
- Publication Date:
- NSF-PAR ID:
- 10201070
- Journal Name:
- Optics Express
- Volume:
- 28
- Issue:
- 23
- Page Range or eLocation-ID:
- Article No. 35321
- ISSN:
- 1094-4087; OPEXFF
- Publisher:
- Optical Society of America
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Abstract Plasmonic grating filters can be fabricated in single lithography process and reduce the cost of colour filters used in hyperspectral cameras. Due to the presence of Rayleigh Anomaly (RA) peak, however, it has not been possible to design filter array spanning wide-spectral-range without sacrificing spectral purity. In this paper, a plasmonic grating filter design using Metal-Insulator-Metal (MIM) with suppressed RA peak is presented. Proposed filter allows extending spectral range without sacrificing spectral purity. Using proposed MIM structure, surface plasmon polariton (SPP) mode supported on air side of bottom grating structure is cancelled by second set of SPP mode on top grating structure. This allows designing filter array with improved spectral range and achieves better than 2× improvement in suppression of the Rayleigh Anomaly peak.
-
Resonant tunneling diodes (RTDs) have come full-circle in the past 10 years after their demonstration in the early 1990s as the fastest room-temperature semiconductor oscillator, displaying experimental results up to 712 GHz and fmax values exceeding 1.0 THz [1]. Now the RTD is once again the preeminent electronic oscillator above 1.0 THz and is being implemented as a coherent source [2] and a self-oscillating mixer [3], amongst other applications. This paper concerns RTD electroluminescence – an effect that has been studied very little in the past 30+ years of RTD development, and not at room temperature. We present experiments and modeling of an n-type In0.53Ga0.47As/AlAs double-barrier RTD operating as a cross-gap light emitter at ~300K. The MBE-growth stack is shown in Fig. 1(a). A 15-μm-diam-mesa device was defined by standard planar processing including a top annular ohmic contact with a 5-μm-diam pinhole in the center to couple out enough of the internal emission for accurate free-space power measurements [4]. The emission spectra have the behavior displayed in Fig. 1(b), parameterized by bias voltage (VB). The long wavelength emission edge is at = 1684 nm - close to the In0.53Ga0.47As bandgap energy of Ug ≈ 0.75 eV at 300 K.more »
-
In this study, we compared the transient self-heating behavior of a homoepitaxial β-Ga2O3 MOSFET and a GaN-on-Si HEMT using nanoparticle-assisted Raman thermometry and thermoreflectance thermal imaging. The effectiveness of bottom-side and double-side cooling schemes using a polycrystalline diamond substrate and a diamond passivation layer were studied via transient thermal modeling. Because of the low thermal diffusivity of β-Ga2O3, the use of a β-Ga2O3 composite substrate (bottom-side cooling) must be augmented by a diamond passivation layer (top-side cooling) to effectively cool the device active region under both steady-state and transient operating conditions. Without no proper cooling applied, the steady-state device-to-package thermal resistance of a homoepitaxial β-Ga2O3 MOSFET is 2.6 times higher than that for a GaN-on-Si HEMT. Replacing the substrate with polycrystalline diamond (under a 6.5 μm-thick β-Ga2O3 layer) could reduce the steady-state temperature rise by 65% compared to that for a homoepitaxial β-Ga2O3 MOSFET. However, for high frequency power switching applications beyond the ~102 kHz range, bottom-side cooling (integration with a high thermal conductivity substrate) does not improve the transient thermal response of the device. Adding a diamond passivation over layer diamond not only suppresses the steadystate temperature rise, but also drastically reduces the transient temperature rise under high frequencymore »
-
We demonstrate widely tunable single-mode V-coupled-cavity lasers emitting at wavelengths near 3 µm based on a type-II interband cascade (IC) structure. The mode selection is achieved using a half-wave V-coupler designed for the IC structure in the mid-infrared range. The laser waveguides and cavity structure are deeply etched in a single etching step, without any grating. By changing the injection current at a fixed heat-sink temperature, a tuning range over 35 nm can be achieved with a side-mode suppression-ratio up to 28 dB. The tuning range can be extended to 60 nm when combined with the adjustments of the heat-sink temperature.