skip to main content


Title: Towards elucidating structure of ligand-protected nanoclusters
Ligand-protected metal nanoclusters (NCs) are organic–inorganic nanostructures, exhibiting high stability at specific “magic size” compositions and tunable properties that make them promising candidates for a wide range of nanotechnology-based applications. Synthesis and characterization of these nanostructures has been achieved with atomic precision, offering great opportunities to study the origin of new physicochemical property emergence at the nanoscale using theory and computation. In this Frontier article, we highlight the recent advances in the field of ligand-protected metal NCs, focusing on stability theories on monometallic and heterometal doped NCs, and NC structure prediction. Furthermore, we discuss current challenges on predicting previously undiscovered NCs and propose future steps to advance the field through applying first principles calculations, machine learning, and data-science-based approaches.  more » « less
Award ID(s):
1652694
NSF-PAR ID:
10201345
Author(s) / Creator(s):
;
Date Published:
Journal Name:
Dalton Transactions
Volume:
49
Issue:
27
ISSN:
1477-9226
Page Range / eLocation ID:
9191 to 9202
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    Chirality is ubiquitous in nature and occurs at all length scales. The development of applications for chiral nanostructures is rising rapidly. With the recent achievements of atomically precise nanochemistry, total structures of ligand‐protected Au and other metal nanoclusters (NCs) are successfully obtained, and the origins of chirality are discovered to be associated with different parts of the cluster, including the surface ligands (e.g., swirl patterns), the organic–inorganic interface (e.g., helical stripes), and the kernel. Herein, a unified picture of metal–ligand surface bonding‐induced chirality for the nanoclusters is proposed. The different bonding modes of M–X (where M = metal and X = the binding atom of ligand) lead to different surface structures on nanoclusters, which in turn give rise to various characteristic features of chirality. A comparison of Au–thiolate NCs with Au–phosphine ones further reveals the important roles of surface bonding. Compared to the Au–thiolate NCs, the Ag/Cu/Cd–thiolate systems exhibit different coordination modes between the metal and the thiolate. Other than thiolate and phosphine ligands, alkynyls are also briefly discussed. Several methods of obtaining chiroptically active nanoclusters are introduced, such as enantioseparation by high‐performance liquid chromatography and enantioselective synthesis. Future perspectives on chiral NCs are also proposed.

     
    more » « less
  2. Metal halide perovskite nanocrystals (NCs) have emerged as new-generation light-emitting materials with narrow emissions and high photoluminescence quantum efficiencies (PLQEs). Various types of perovskite NCs, e.g., platelets, wires, and cubes, have been discovered to exhibit tunable emissions across the whole visible spectrum. Despite remarkable advances in the field of perovskite NCs, many nanostructures in inorganic NCs have not yet been realized in metal halide perovskites, and producing highly efficient blue-emitting perovskite NCs remains challenging and of great interest. Here, we report the discovery of highly efficient blue-emitting cesium lead bromide (CsPbBr 3 ) perovskite hollow NCs. By facile solution processing of CsPbBr 3 precursor solution containing ethylenediammonium bromide and sodium bromide, in situ formation of hollow CsPbBr 3 NCs with controlled particle and pore sizes is realized. Synthetic control of hollow nanostructures with quantum confinement effect results in color tuning of CsPbBr 3 NCs from green to blue, with high PLQEs of up to 81%. 
    more » « less
  3. Understanding the critical roles of ligands ( e.g. thiolates, SR) in the formation of metal nanoclusters of specific sizes has long been an intriguing task since the report of ligand exchange-induced transformation of Au 38 (SR) 24 into Au 36 (SR′) 24 . Herein, we conduct a systematic study of ligand exchange on Au 38 (SC 2 H 4 Ph) 24 with 21 incoming thiols and reveal that the size/structure preference is dependent on the substituent site. Specifically, ortho -substituted benzenethiols preserve the structure of Au 38 (SR) 24 , while para - or non-substituted benzenethiols cause its transformation into Au 36 (SR) 24 . Strong electron-donating or -withdrawing groups do not make a difference, but they will inhibit full ligand exchange. Moreover, the crystal structure of Au 38 (SR) 24 (SR = 2,4-dimethylbenzenethiolate) exhibits distinctive π⋯π stacking and “anagostic” interactions (indicated by substantially short Au⋯H distances). Theoretical calculations reveal the increased energies of frontier orbitals for aromatic ligand-protected Au 38 , indicating decreased electronic stability. However, this adverse effect could be compensated for by the Au⋯H–C interactions, which improve the geometric stability when ortho -substituted benzenethiols are used. Overall, this work reveals the substituent site effects based on the Au 38 model, and highlights the long-neglected “anagostic” interactions on the surface of Au-SR NCs which improve the structural stability. 
    more » « less
  4. Using density functional theory (DFT) calculations, we investigated the electrochemical reduction of CO 2 and the competing H 2 evolution reaction on ligand-protected Au 25 nanoclusters (NCs) of different charge states, Au 25 (SR) 18 q ( q = −1, 0, +1). Our results showed that regardless of charge state, CO 2 electroreduction over Au 25 (SR) 18 q NCs was not feasible because of the extreme endothermicity to stabilize the carboxyl (COOH) intermediate. When we accounted for the removal of a ligand (both –SR and –R) from Au 25 (SR) 18 q under electrochemical conditions, surprisingly we found that this is a thermodynamically feasible process at the experimentally applied potentials with the generated surface sites becoming active centers for electrocatalysis. In every case, the negatively charged NCs, losing a ligand from their surface during electrochemical conditions, were found to significantly stabilize the COOH intermediate, resulting in dramatically enhanced CO 2 reduction. The generated sites for CO 2 reduction were also found to be active for H 2 evolution, which agrees with experimental observations that these two processes compete. Interestingly, we found that the removal of an –R ligand from the negatively charged NC, resulted in a catalyst that was both active and selective for CO 2 reduction. This work highlights the importance of both the overall charge state and generation of catalytically active surface sites on ligand-protected NCs, while elucidating the CO 2 electroreduction mechanisms. Overall, our work rationalizes a series of experimental observations and demonstrates pathways to convert a very stable and catalytically inactive NC to an active electrocatalyst. 
    more » « less
  5. Recently, silver nanoclusters have garnered considerable attention after the high-yield synthesis and crystallization of a thiolate-protected silver nanocluster, Na4Ag44(SR)30 (SR, protecting thiolate ligand). One intriguing feature of Na4Ag44(SR)30 is its outstanding stability and resistance to chemical reactions, in striking difference from other silver nanostructures whose susceptibility to oxidation (tarnishing) has been commonly observed and thus limits their applications in nanotechnology. Herein, we report the mechanism on the ultrahigh stability of Na4Ag44(SR)30 by uncovering how coordinating solvents interact with the Na4Ag44(SR)30 nanocluster at the atomic scale. Through synchrotron X-ray experiments and theoretical calculations, it was found that strongly coordinating aprotic solvents interact with surface Ag atoms, particularly between ligand bundles, which compresses the Ag core and relaxes surface metal–ligand interactions. Furthermore, water was used as a cosolvent to demonstrate that semiaqueous conditions play an important role in protecting exposed surface regions and can further influence the local structure of the silver nanocluster itself. Notably, under semiaqueous conditions, aprotic coordinating solvent molecules preferentially remain on the metal surface while water molecules interact with ligands, and ligand bundling persisted across the varied solvation conditions. This work offers an atomic level mechanism on the ultrahigh stability of the Na4Ag44(SR)30 nanoclusters from the nanocluster-coordinating solvent interaction perspective, and implies that nanocluster-solvent interactions should be carefully considered moving forward for silver nanoclusters, as they can influence the electronic/chemical properties of the nanocluster as well as the surface accessibility of small molecules for potential catalytic and biomedical applications. 
    more » « less