skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Silicate Bond Characteristics in Calcium–Silicate–Hydrates Determined by High Pressure Raman Spectroscopy
Award ID(s):
1935604 1826122
PAR ID:
10201540
Author(s) / Creator(s):
; ; ; ; ; ; ;
Date Published:
Journal Name:
The Journal of Physical Chemistry C
Volume:
124
Issue:
33
ISSN:
1932-7447
Page Range / eLocation ID:
18335 to 18345
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. A series of hydrothermal diamond anvil cell experiments was conducted to constrain the equilibrium distribution of molecular H2 between H2O-saturated sodium aluminosilicate melts and H2O at elevated temperatures (600 – 800 °C) and pressures (317 – 1265 MPa). The distribution of H2 between the silicate liquid and the aqueous fluid was achieved through real-time monitoring of the H-H stretching vibration under in situ conditions using Raman vibrational spectroscopy. Results show that the solubility of H2 in silicate melts saturated with H2O decreases as the temperature increases, with control exerted by the mole fraction of H2O in the melt. The dissolution of H2 in the hydrous silicate melts appears to follow Henrian behavior, resembling that of an inert, neutral non-polar species. The implications are extended into developing an understanding of the H partitioning between H2-rich atmospheres blanketing magma oceans in the early history of planetary bodies. For example, transferring H from primordial atmospheric envelopes to the interior of rocky exoplanets may be less efficient than previously believed, which should be considered in models of volatile retention. Experimental data also suggest that minimal amounts of solar nebula H2 are likely to dissolve in the molten surface of primitive objects in the protoplanetary disk (~10-5 to 10-9 mole faction H2 in melt), contradicting the highly reducing conditions observed in chondrule mineral compositions. 
    more » « less
  2. null (Ed.)
    Abstract Nucleation is generally viewed as a structural fluctuation that passes a critical size to eventually become a stable emerging new phase. However, this concept leaves out many details, such as changes in cluster composition and competing pathways to the new phase. In this work, both experimental and computer modeling studies are used to understand the cluster composition and pathways. Monte Carlo and molecular dynamics approaches are used to analyze the thermodynamic and kinetic contributions to the nucleation landscape in barium silicate glasses. Experimental techniques examine the resulting polycrystals that form. Both the modeling and experimental data indicate that a silica rich core plays a dominant role in the nucleation process. 
    more » « less