skip to main content

Title: Photonic integrated circuits based hybrid integration for wavelength beam combining

In this Letter, we have demonstrated wavelength beam combining (WBC) through hybrid integration of photonic integrated circuits (PICs) to significantly reduce the size, weight, and operation power of the laser combining system. The hybrid integration WBC includes III/V semiconductor optical amplifiers (SOAs), which provide gain, and the silicon nitride PICs, which perform as the external cavity. We first show that the arrayed waveguide grating (AWG) -based hybrid laser defines the lasing wavelength through the AWG passband. We then demonstrate that the AWG successfully forms multiple channel lasers by combining SOAs in the hybrid platform.

more » « less
Author(s) / Creator(s):
; ; ;
Publisher / Repository:
Optical Society of America
Date Published:
Journal Name:
Optics Letters
0146-9592; OPLEDP
Page Range / eLocation ID:
Article No. 6338
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
    more » « less
  2. Chip-scale, tunable narrow-linewidth hybrid integrated diode lasers based on quantum-dot RSOAs at 1.3 μm are demonstrated through butt-coupling to a silicon nitride photonic integrated circuit. The hybrid laser linewidth is around 85 kHz, and the tuning range is around 47 nm. Then, a fully integrated beam steerer is demonstrated by combining the tunable diode laser with a waveguide surface grating. Our system can provide beam steering of 4.1° in one direction by tuning the wavelength of the hybrid laser. Besides, a wavelength-tunable triple-band hybrid laser system working at1,1.3, and1.55  μmbands is demonstrated for wide-angle beam steering in a single chip.

    more » « less
  3. Visible-light photonic integrated circuits (PICs) promise scalability for technologies such as quantum information, biosensing, and scanning displays, yet extending large-scale silicon photonics to shorter wavelengths has been challenging due to the higher losses. Silicon nitride (SiN) has stood out as the leading platform for visible photonics, but the propagation losses strongly depend on the film’s deposition and fabrication processes. Current loss measurement techniques cannot accurately distinguish between absorption and surface scattering, making it difficult to identify the dominant loss source and reach the platform’s fundamental limit. Here we demonstrate an ultra-low loss, high-confinement SiN platform that approaches the limits of absorption and scattering across the visible spectrum. Leveraging the sensitivity of microresonators to loss, we probe and discriminate each loss contribution with unparalleled sensitivity, and derive their fundamental limits and scaling laws as a function of wavelength, film properties and waveguide parameters. Through the design of the waveguide cross-section, we show how to approach the absorption limit of the platform, and demonstrate the lowest propagation losses in high-confinement SiN to date across the visible spectrum. We envision that our techniques for loss characterization and minimization will contribute to the development of large-scale, dense PICs that redefine the loss limits of integrated platforms across the electromagnetic spectrum.

    more » « less
  4. Defect-based single photon emitters play an important role in quantum information technologies. Quantum emitters in technologically mature direct wide bandgap semiconductors, such as nitrides, are attractive for on-chip photonic integration. GaN has recently been reported to host bright and photostable defect single photon emitters in the 600–700 nm wavelength range. Spectral diffusion caused by local electric field fluctuation around the emitter limits the photon indistinguishability, which is a key requirement for quantum applications. In this work, we investigate the spectral diffusion properties of GaN defect emitters integrated with a solid immersion lens, employing both spectral domain and time domain techniques through spectroscopy and photon autocorrelation measurements at cryogenic temperature. Our results show that the GaN defect emitter at 10 K exhibits a Gaussian line shape with a linewidth of ∼1 meV while the spectral diffusion characteristic time falls within the range of a few hundred nanoseconds to a few microseconds. We study the dependency of the spectral diffusion rate and Gaussian linewidth on the excitation laser power. Our work provides insight into the ultrafast spectral diffusion in GaN defect-based single photon emitter systems and contributes toward harnessing the potential of these emitters for applications, especially for indistinguishable single photon generation.

    more » « less
  5. Owing to advances in fabrication technology and device design, semiconductor optical amplifiers (SOAs) are evolving as a promising candidate for future optical coherent communication links. This review article focuses on the fundamentals and broad applications of SOAs, specifically for optical channels with advanced modulation formats, as an integrable broadband amplifier in commercial transponders and as a nonlinear medium for optical signal processing. We discuss the basic functioning of an SOA and distortions of coherent signals when SOAs are used as amplifiers. We first focus on the techniques used for low-distortion amplification of phase-modulated signals using SOAs. Then we discuss optical signal processing techniques enabled by SOAs with an emphasis on all-optical wavelength conversion, optical phase conjugation, and phase quantization of coherent optical signals.

    more » « less