There is no consensus on how quickly the earth's ice sheets are melting due to global warming, nor on the ramifications to sea level rise. Due to its potential effects on coastal populations and global economies, sea level rise is a grave concern, making ice melt rates an important area of study. The ice‐sheet science community consists of two groups that perform related but distinct kinds of research: a data community, and a model building community. The data community characterizes past and current states of the ice sheets by assembling data from field and satellite observations. The modeling community forecasts the rate of ice‐sheet decline with computational models validated against observations. Although observational data and models depend on one another, these two groups are not well integrated. Better coordination between data collection efforts and modeling efforts is imperative if we are to improve our understanding of ice sheet loss rates. We present a new science gateway,
- Award ID(s):
- 1663671
- Publication Date:
- NSF-PAR ID:
- 10201653
- Journal Name:
- Journal of Biomechanical Engineering
- Volume:
- 142
- Issue:
- 11
- ISSN:
- 0148-0731
- Sponsoring Org:
- National Science Foundation
More Like this
-
Abstract GHub , a collaboration space for ice sheet scientists. This web‐accessible gateway will host datasets and modeling workflows, and provide access to codes that enable tool building by the ice sheet science community. Using GHub, we will collect and centralize existing datasets, creating data productsmore » -
Abstract There has been a strong need for simulation environments that are capable of modeling deep interdependencies between complex systems encountered during natural hazards, such as the interactions and coupled effects between civil infrastructure systems response, human behavior, and social policies, for improved community resilience. Coupling such complex components with an integrated simulation requires continuous data exchange between different simulators simulating separate models during the entire simulation process. This can be implemented by means of distributed simulation platforms or data passing tools. In order to provide a systematic reference for simulation tool choice and facilitating the development of compatible distributed simulators for deep interdependent study in the context of natural hazards, this article focuses on generic tools suitable for integration of simulators from different fields but not the platforms that are mainly used in some specific fields. With this aim, the article provides a comprehensive review of the most commonly used generic distributed simulation platforms (Distributed Interactive Simulation (DIS), High Level Architecture (HLA), Test and Training Enabling Architecture (TENA), and Distributed Data Services (DDS)) and data passing tools (Robot Operation System (ROS) and Lightweight Communication and Marshalling (LCM)) and compares their advantages and disadvantages. Three specific limitations in existing platformsmore »
-
Abstract This project is funded by the US National Science Foundation (NSF) through their NSF RAPID program under the title “Modeling Corona Spread Using Big Data Analytics.” The project is a joint effort between the Department of Computer & Electrical Engineering and Computer Science at FAU and a research group from LexisNexis Risk Solutions. The novel coronavirus Covid-19 originated in China in early December 2019 and has rapidly spread to many countries around the globe, with the number of confirmed cases increasing every day. Covid-19 is officially a pandemic. It is a novel infection with serious clinical manifestations, including death, and it has reached at least 124 countries and territories. Although the ultimate course and impact of Covid-19 are uncertain, it is not merely possible but likely that the disease will produce enough severe illness to overwhelm the worldwide health care infrastructure. Emerging viral pandemics can place extraordinary and sustained demands on public health and health systems and on providers of essential community services. Modeling the Covid-19 pandemic spread is challenging. But there are data that can be used to project resource demands. Estimates of the reproductive number (R) of SARS-CoV-2 show that at the beginning of the epidemic, each infectedmore »
-
Abstract
This dataset contains monthly average output files from the iCAM6 simulations used in the manuscript "Enhancing understanding of the hydrological cycle via pairing of process-oriented and isotope ratio tracers," in review at the Journal of Advances in Modeling Earth Systems. A file corresponding to each of the tagged and isotopic variables used in this manuscript is included. Files are at 0.9° latitude x 1.25° longitude, and are in NetCDF format. Data from two simulations are included: 1) a simulation where the atmospheric model was "nudged" to ERA5 wind and surface pressure fields, by adding an additional tendency (see section 3.1 of associated manuscript), and 2) a simulation where the atmospheric state was allowed to freely evolve, using only boundary conditions imposed at the surface and top of atmosphere. Specific information about each of the variables provided is located in the "usage notes" section below. Associated article abstract: The hydrologic cycle couples the Earth's energy and carbon budgets through evaporation, moisture transport, and precipitation. Despite a wealth of observations and models, fundamental limitations remain in our capacity to deduce even the most basic properties of the hydrological cycle, including the spatial pattern of the residence time (RT) of water in -
Abstract Modeling and simulation is transforming modern materials science, becoming an important tool for the discovery of new materials and material phenomena, for gaining insight into the processes that govern materials behavior, and, increasingly, for quantitative predictions that can be used as part of a design tool in full partnership with experimental synthesis and characterization. Modeling and simulation is the essential bridge from good science to good engineering, spanning from fundamental understanding of materials behavior to deliberate design of new materials technologies leveraging new properties and processes. This Roadmap presents a broad overview of the extensive impact computational modeling has had in materials science in the past few decades, and offers focused perspectives on where the path forward lies as this rapidly expanding field evolves to meet the challenges of the next few decades. The Roadmap offers perspectives on advances within disciplines as diverse as phase field methods to model mesoscale behavior and molecular dynamics methods to deduce the fundamental atomic-scale dynamical processes governing materials response, to the challenges involved in the interdisciplinary research that tackles complex materials problems where the governing phenomena span different scales of materials behavior requiring multiscale approaches. The shift from understanding fundamental materials behavior tomore »