skip to main content


Title: Ani-Bot: A Modular Robotics System Supporting Creation, Tweaking, and Usage with Mixed-Reality Interactions
Ani-Bot is a modular robotics system that allows users to control their DIY robots using Mixed-Reality Interaction (MRI). This system takes advantage of MRI to enable users to visually program the robot through the augmented view of a Head-Mounted Display (HMD). In this paper, we first explain the design of the Mixed-Reality (MR) ready modular robotics system, which allows users to instantly perform MRI once they finish assembling the robot. Then, we elaborate the augmentations provided by the MR system in the three primary phases of a construction kit's lifecycle: Creation, Tweaking, and Usage. Finally, we demonstrate Ani-Bot with four application examples and evaluate the system with a two-session user study. The results of our evaluation indicate that Ani-Bot does successfully embed MRI into the lifecycle (Creation, Tweaking, Usage) of DIY robotics and that it does show strong potential for delivering an enhanced user experience.  more » « less
Award ID(s):
1632154
NSF-PAR ID:
10201789
Author(s) / Creator(s):
; ; ; ;
Date Published:
Journal Name:
Publication:TEI '18: Proceedings of the Twelfth International Conference on Tangible, Embedded, and Embodied Interaction (TEI 18)
Page Range / eLocation ID:
419 to 428
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. We present Ani-Bot, a modular robotics system that allows users to construct Do-It-Yourself (DIY) robots and use mixed-reality approach to interact with them. Ani-Bot enables novel user experience by embedding Mixed-Reality Interaction (MRI) in the three phases of interacting with a modular construction kit, namely, Creation, Tweaking, and Usage. In this paper, we first present the system design that allows users to instantly perform MRI once they finish assembling the robot. Further, we discuss the augmentations offered by MRI in the three phases in specific. 
    more » « less
  2. null (Ed.)
    Though virtual reality (VR) has been advanced to certain levels of maturity in recent years, the general public, especially the population of the blind and visually impaired (BVI), still cannot enjoy the benefit provided by VR. Current VR accessibility applications have been developed either on expensive head-mounted displays or with extra accessories and mechanisms, which are either not accessible or inconvenient for BVI individuals. In this paper, we present a mobile VR app that enables BVI users to access a virtual environment on an iPhone in order to build their skills of perception and recognition of the virtual environment and the virtual objects in the environment. The app uses the iPhone on a selfie stick to simulate a long cane in VR, and applies Augmented Reality (AR) techniques to track the iPhone’s real-time poses in an empty space of the real world, which is then synchronized to the long cane in the VR environment. Due to the use of mixed reality (the integration of VR & AR), we call it the Mixed Reality cane (MR Cane), which provides BVI users auditory and vibrotactile feedback whenever the virtual cane comes in contact with objects in VR. Thus, the MR Cane allows BVI individuals to interact with the virtual objects and identify approximate sizes and locations of the objects in the virtual environment. We performed preliminary user studies with blind-folded participants to investigate the effectiveness of the proposed mobile approach and the results indicate that the proposed MR Cane could be effective to help BVI individuals in understanding the interaction with virtual objects and exploring 3D virtual environments. The MR Cane concept can be extended to new applications of navigation, training and entertainment for BVI individuals without more significant efforts. 
    more » « less
  3. null (Ed.)
    There is an increasing trend of Virtual-Reality (VR) applications found in education, entertainment, and industry. Many of them utilize real world tools, environments, and interactions as bases for creation. However, creating such applications is tedious, fragmented, and involves expertise in authoring VR using programming and 3D-modelling softwares. This hinders VR adoption by decoupling subject matter experts from the actual process of authoring while increasing cost and time. We present VRFromX, an in-situ Do-It-Yourself (DIY) platform for content creation in VR that allows users to create interactive virtual experiences. Using our system, users can select region(s) of interest (ROI) in scanned point cloud or sketch in mid-air using a brush tool to retrieve virtual models and then attach behavioral properties to them. We ran an exploratory study to evaluate usability of VRFromX and the results demonstrate feasibility of the framework as an authoring tool. Finally, we implemented three possible use-cases to showcase potential applications. 
    more » « less
  4. We present the design of a mixed reality (MR) telehealth training system that aims to close the gap between in-person and distance training and re-training for medical procedures. Our system uses real-time volumetric capture as a means for communicating and relating spatial information between the non-colocated trainee and instructor. The system's design is based on a requirements elicitation study performed in situ, at a medical school simulation training center. The focus is on the lightweight real-time transmission of volumetric data - meaning the use of consumer hardware, easy and quick deployment, and low-demand computations. We evaluate the MR system design by analyzing the workload for the users during medical training. We compare in-person, video, and MR training workloads. The results indicate that the overall workload for central line placement training with MR does not increase significantly compared to video communication. Our work shows that, when designed strategically together with domain experts, an MR communication system can be used effectively for complex medical procedural training without increasing the overall workload for users significantly. Moreover, MR systems offer new opportunities for teaching due to spatial information, hand tracking, and augmented communication. 
    more » « less
  5. Abstract We present the design of a mixed reality (MR) telehealth training system that aims to close the gap between in-person and distance training and re-training for medical procedures. Our system uses real-time volumetric capture as a means for communicating and relating spatial information between the non-colocated trainee and instructor. The system's design is based on a requirements elicitation study performed in situ, at a medical school simulation training center. The focus is on the lightweight real-time transmission of volumetric data - meaning the use of consumer hardware, easy and quick deployment, and low-demand computations. We evaluate the MR system design by analyzing the workload for the users during medical training. We compare in-person, video, and MR training workloads. The results indicate that the overall workload for central line placement training with MR does not increase significantly compared to video communication. Our work shows that, when designed strategically together with domain experts, an MR communication system can be used effectively for complex medical procedural training without increasing the overall workload for users significantly. Moreover, MR systems offer new opportunities for teaching due to spatial information, hand tracking, and augmented communication. 
    more » « less