Abstract A major challenge in ART is to select high-quality oocytes and embryos. The metabolism of oocytes and embryos has long been linked to their viability, suggesting the potential utility of metabolic measurements to aid in selection. Here, we review recent work on noninvasive metabolic imaging of cumulus cells, oocytes, and embryos. We focus our discussion on fluorescence lifetime imaging microscopy (FLIM) of the autofluorescent coenzymes NAD(P)H and flavine adenine dinucleotide (FAD+), which play central roles in many metabolic pathways. FLIM measurements provide quantitative information on NAD(P)H and FAD+ concentrations and engagement with enzymes, leading to a robust means of characterizing the metabolic state of cells. We argue that FLIM is a promising approach to aid in oocyte and embryo selection.
more »
« less
Biodynamic digital holographic speckle microscopy for oocyte and embryo metabolic evaluation
Assisted reproductive technologies seek to improve the success rate of pregnancies. Morphology scoring is a common approach to evaluate oocyte and embryo viability prior to embryo transferin utero, but the efficacy of the method is low. We apply biodynamic imaging, based on dynamic light scattering and low-coherence digital holography, to assess the metabolic activity of oocytes and embryos. A biodynamic microscope, developed to image small and translucent biological specimens, is inserted into the bay of a commercial inverted microscope that can switch between conventional microscopy channels and biodynamic microscopy. We find intracellular Doppler spectral features that act as noninvasive proxies for embryo metabolic activity that may relate to embryo viability.
more »
« less
- Award ID(s):
- 1911357
- PAR ID:
- 10201897
- Publisher / Repository:
- Optical Society of America
- Date Published:
- Journal Name:
- Applied Optics
- Volume:
- 60
- Issue:
- 4
- ISSN:
- 1559-128X; APOPAI
- Format(s):
- Medium: X Size: Article No. A222
- Size(s):
- Article No. A222
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Here we present a microfluidic model that allows for co-culture of human osteoblasts, chondrocytes, fibroblasts, and macrophages of both quiescent (M0) and pro-inflammatory (M1) phenotypes, maintaining initial viability of each cell type at 24 h of co-culture. We established healthy (M0-based) and diseased (M1-based) joint models within this system. An established disease model based on supplementation of IFN-γ and lipopolysaccharide in cell culture media was used to induce an M1 phenotype in macrophages to recapitulate inflammatory conditions found in Osteoarthritis. Cell viability was assessed using NucBlue™ Live and NucGreen™ Dead fluorescent stains, with mean viability of 83.9% ± 14% and 83.3% ± 12% for healthy and diseased models, respectively, compared with 93.3% ± 4% for cell in standard monoculture conditions. Cytotoxicity was assessed via a lactate dehydrogenase (LDH) assay and showed no measurable increase in lactate dehydrogenase release into the culture medium under co-culture conditions, indicating that neither model promotes a loss of cell membrane integrity due to cytotoxic effects. Cellular metabolic activity was assessed using a PrestoBlue™ assay and indicated increased cellular metabolic activity in co-culture, with levels 5.9 ± 3.2 times mean monolayer cell metabolic activity levels in the healthy joint model and 5.3 ± 3.4 times mean monolayer levels in the diseased model. Overall, these findings indicate that the multi-tissue nature ofin vivohuman joint conditions can be recapitulated by our microfluidic co-culture system at 24 h and thus this model serves as a promising tool for studying the pathophysiology of rheumatic diseases and testing potential therapeutics.more » « less
-
Abstract We present a two-photon fluorescence microscope designed for high-speed imaging of neural activity in cellular resolution. Our microscope uses a new adaptive sampling scheme with line illumination. Instead of building images pixel by pixel via scanning a diffraction-limited spot across the sample, our scheme only illuminates the regions of interest (i.e., neuronal cell bodies), and samples a large area of them in a single measurement. Such a scheme significantly increases the imaging speed and reduces the overall laser power on the brain tissue. Using this approach, we performed high-speed imaging of the neural activity of mouse cortexin vivo. Our method provides a new sampling strategy in laser-scanning two-photon microscopy, and will be powerful for high-throughput imaging of neural activity.more » « less
-
We present a two-photon fluorescence microscope designed for high-speed imaging of neural activity at cellular resolution. Our microscope uses an adaptive sampling scheme with line illumination. Instead of building images pixel by pixel via scanning a diffraction-limited spot across the sample, our scheme only illuminates the regions of interest (i.e., neuronal cell bodies) and samples a large area of them in a single measurement. Such a scheme significantly increases the imaging speed and reduces the overall laser power on the brain tissue. Using this approach, we performed high-speed imaging of the neuronal activity in mouse cortexin vivo. Our method provides a sampling strategy in laser-scanning two-photon microscopy and will be powerful for high-throughput imaging of neural activity.more » « less
-
Abstract Background The teleost fish Fundulus heteroclitus inhabit estuaries heavily polluted with persistent and bioaccumulative chemicals. While embryos of parents from polluted sites are remarkably resistant to toxic sediment and develop normally, embryos of parents from relatively clean estuaries, when treated with polluted sediment extracts, are developmentally delayed, displaying deformities characteristic of pollution-induced embryotoxicity. To gain insight into parental effects on sensitive and resistant phenotypes during late organogenesis, we established sensitive, resistant, and crossed embryo families using five female and five male parents from relatively clean and predominantly PAH-polluted estuaries each, measured heart rates, and quantified individual embryo expression of 179 metabolic genes. Results Pollution-induced embryotoxicity manifested as morphological deformities, significant developmental delays, and altered cardiac physiology was evident among sensitive embryos resulting from crosses between females and males from relatively clean estuaries. Significantly different heart rates among several geographically unrelated populations of sensitive, resistant, and crossed embryo families during late organogenesis and pre-hatching suggest site-specific adaptive cardiac physiology phenotypes relative to pollution exposure. Metabolic gene expression patterns (32 genes, 17.9%, at p < 0.05; 11 genes, 6.1%, at p < 0.01) among the embryo families indicate maternal pollutant deposition in the eggs and parental effects on gene expression and metabolic alterations. Conclusion Heart rate differences among sensitive, resistant, and crossed embryos is a reliable phenotype for further explorations of adaptive mechanisms. While metabolic gene expression patterns among embryo families are suggestive of parental effects on several differentially expressed genes, a definitive adaptive signature and metabolic cost of resistant phenotypes is unclear and shows unexpected sensitive-resistant crossed embryo expression profiles. Our study highlights physiological and metabolic gene expression differences during a critical embryonic stage among pollution sensitive, resistant, and crossed embryo families, which may contribute to underlying resistance mechanisms observed in natural F. heteroclitus populations living in heavily contaminated estuaries.more » « less
An official website of the United States government
