skip to main content

Title: Biodynamic digital holographic speckle microscopy for oocyte and embryo metabolic evaluation

Assisted reproductive technologies seek to improve the success rate of pregnancies. Morphology scoring is a common approach to evaluate oocyte and embryo viability prior to embryo transferin utero, but the efficacy of the method is low. We apply biodynamic imaging, based on dynamic light scattering and low-coherence digital holography, to assess the metabolic activity of oocytes and embryos. A biodynamic microscope, developed to image small and translucent biological specimens, is inserted into the bay of a commercial inverted microscope that can switch between conventional microscopy channels and biodynamic microscopy. We find intracellular Doppler spectral features that act as noninvasive proxies for embryo metabolic activity that may relate to embryo viability.

more » « less
Award ID(s):
Author(s) / Creator(s):
; ; ; ; ;
Publisher / Repository:
Optical Society of America
Date Published:
Journal Name:
Applied Optics
1559-128X; APOPAI
Page Range / eLocation ID:
Article No. A222
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract STUDY QUESTION

    Is the combined use of fluorescence lifetime imaging microscopy (FLIM)-based metabolic imaging and second harmonic generation (SHG) spindle imaging a feasible and safe approach for noninvasive embryo assessment?


    Metabolic imaging can sensitively detect meaningful metabolic changes in embryos, SHG produces high-quality images of spindles and the methods do not significantly impair embryo viability.


    Proper metabolism is essential for embryo viability. Metabolic imaging is a well-tested method for measuring metabolism of cells and tissues, but it is unclear if it is sensitive enough and safe enough for use in embryo assessment.


    This study consisted of time-course experiments and control versus treatment experiments. We monitored the metabolism of 25 mouse oocytes with a noninvasive metabolic imaging system while exposing them to oxamate (cytoplasmic lactate dehydrogenase inhibitor) and rotenone (mitochondrial oxidative phosphorylation inhibitor) in series. Mouse embryos (n = 39) were measured every 2 h from the one-cell stage to blastocyst in order to characterize metabolic changes occurring during pre-implantation development. To assess the safety of FLIM illumination, n = 144 illuminated embryos were implanted into n = 12 mice, and n = 108 nonilluminated embryos were implanted into n = 9 mice.


    Experiments were performed in mouse embryos and oocytes. Samples were monitored with noninvasive, FLIM-based metabolic imaging of nicotinamide adenine dinucleotide (NADH) and flavin adenine dinucleotide (FAD) autofluorescence. Between NADH cytoplasm, NADH mitochondria and FAD mitochondria, a single metabolic measurement produces up to 12 quantitative parameters for characterizing the metabolic state of an embryo. For safety experiments, live birth rates and pup weights (mean ± SEM) were used as endpoints. For all test conditions, the level of significance was set at P < 0.05.


    Measured FLIM parameters were highly sensitive to metabolic changes due to both metabolic perturbations and embryo development. For oocytes, metabolic parameter values were compared before and after exposure to oxamate and rotenone. The metabolic measurements provided a basis for complete separation of the data sets. For embryos, metabolic parameter values were compared between the first division and morula stages, morula and blastocyst and first division and blastocyst. The metabolic measurements again completely separated the data sets. Exposure of embryos to excessive illumination dosages (24 measurements) had no significant effect on live birth rate (5.1 ± 0.94 pups/mouse for illuminated group; 5.7 ± 1.74 pups/mouse for control group) or pup weights (1.88 ± 0.10 g for illuminated group; 1.89 ± 0.11 g for control group).


    The study was performed using a mouse model, so conclusions concerning sensitivity and safety may not generalize to human embryos. A limitation of the live birth data is also that although cages were routinely monitored, we could not preclude that some runt pups may have been eaten.


    Promising proof-of-concept results demonstrate that FLIM with SHG provide detailed biological information that may be valuable for the assessment of embryo and oocyte quality. Live birth experiments support the method’s safety, arguing for further studies of the clinical utility of these techniques.


    Supported by the Blavatnik Biomedical Accelerator Grant at Harvard University and by the Harvard Catalyst/The Harvard Clinical and Translational Science Center (National Institutes of Health Award UL1 TR001102), by NSF grants DMR-0820484 and PFI-TT-1827309 and by NIH grant R01HD092550-01. T.S. was supported by a National Science Foundation Postdoctoral Research Fellowship in Biology grant (1308878). S.F. and S.A. were supported by NSF MRSEC DMR-1420382. Becker and Hickl GmbH sponsored the research with the loaning of equipment for FLIM. T.S. and D.N. are cofounders and shareholders of LuminOva, Inc., and co-hold patents (US20150346100A1 and US20170039415A1) for metabolic imaging methods. D.S. is on the scientific advisory board for Cooper Surgical and has stock options with LuminOva, Inc.

    more » « less
  2. Abstract

    A major challenge in ART is to select high-quality oocytes and embryos. The metabolism of oocytes and embryos has long been linked to their viability, suggesting the potential utility of metabolic measurements to aid in selection. Here, we review recent work on noninvasive metabolic imaging of cumulus cells, oocytes, and embryos. We focus our discussion on fluorescence lifetime imaging microscopy (FLIM) of the autofluorescent coenzymes NAD(P)H and flavine adenine dinucleotide (FAD+), which play central roles in many metabolic pathways. FLIM measurements provide quantitative information on NAD(P)H and FAD+ concentrations and engagement with enzymes, leading to a robust means of characterizing the metabolic state of cells. We argue that FLIM is a promising approach to aid in oocyte and embryo selection.

    more » « less
  3. Abstract

    Topical steroids are known for their anti‐inflammatory properties and are commonly prescribed to treat many adverse skin conditions such as eczema and psoriasis. While these treatments are known to be effective, adverse effects including skin atrophy are common. In this study, the progression of these effects is investigated in anin vivomouse model using multimodal optical microscopy. Utilizing a system capable of performing two‐photon excitation fluorescence microscopy (TPEF) of reduced nicotinamide adenine dinucleotide (NADH) to visualize the epidermal cell layers and second harmonic generation (SHG) microscopy to identify collagen in the dermis, these processes can be studied at the cellular level. Fluorescence lifetime imaging microscopy (FLIM) is also utilized to image intracellularNADHlevels to obtain molecular information regarding metabolic activity following steroid treatment. In this study, fluticasone propionate (FP)‐treated, mometasone furoate (MF)‐treated and untreated animals were imaged longitudinally using a custom‐built multimodal optical microscope. Prolonged steroid treatment over the course of 21 days is shown to result in a significant increase in mean fluorescence lifetime ofNADH, suggesting a faster rate of maturation of epidermal keratinocytes. Alterations to collagen organization and the structural microenvironment are also observed. These results give insight into the structural and biochemical processes of skin atrophy associated with prolonged steroid treatment.

    more » « less
  4. Abstract Background

    Mesenchymal stem cells (MSCs) secrete a diversity of factors with broad therapeutic potential, yet current culture methods limit potency outcomes. In this study, we used topographical cues on polystyrene films to investigate their impact on the secretory profile and potency of bone marrow-derived MSCs (hBM-MSCs). hBM-MSCs from four donors were cultured on topographic substrates depicting defined roughness, curvature, grooves and various levels of wettability.


    The topographical PS-based array was developed using razor printing, polishing and plasma treatment methods. hBM-MSCs from four donors were purchased from RoosterBio and used in co-culture with peripheral blood mononuclear cells (PBMCs) from Cell Applications Inc. in an immunopotency assay to measure immunosuppressive capacity. Cells were cultured on low serum (2%) for 24–48 h prior to analysis. Image-based analysis was used for cell quantification and morphology assessment. Metabolic activity of BM-hMSCs was measured as the mitochondrial oxygen consumption rate using an extracellular flux analyzer. Conditioned media samples of BM-hMSCs were used to quantify secreted factors, and the data were analyzed using R statistics. Enriched bioprocesses were identify using the Gene Ontology toolenrichGOfrom theclusterprofiler.One-way and two-way ANOVAs were carried out to identify significant changes between the conditions. Results were deemed statistically significant for combinedP < 0.05 for at least three independent experiments.


    Cell viability was not significantly affected in the topographical substrates, and cell elongation was enhanced at least twofold in microgrooves and surfaces with a low contact angle. Increased cell elongation correlated with a metabolic shift from oxidative phosphorylation to a glycolytic state which is indicative of a high-energy state. Differential protein expression and gene ontology analyses identified bioprocesses enriched across donors associated with immune modulation and tissue regeneration. The growth of peripheral blood mononuclear cells (PBMCs) was suppressed in hBM-MSCs co-cultures, confirming enhanced immunosuppressive potency. YAP/TAZ levels were found to be reduced on these topographies confirming a mechanosensing effect on cells and suggesting a potential role in the immunomodulatory function of hMSCs.


    This work demonstrates the potential of topographical cues as a culture strategy to improve the secretory capacity and enrich for an immunomodulatory phenotype in hBM-MSCs.

    more » « less
  5. Abstract

    Central nervous system (CNS) neural device functionality hinges on effective communication with surrounding neurons. This depends on both the permissiveness of the device material to promote neuron integration and the ability of the device to avoid a chronic inflammatory response. Previously our lab developed a method using surface adsorbed hydrogel particles (HPs) to promote neuron integration onto typically non‐neural‐permissive substrates. However, little information is known regarding CNS inflammatory cell type responses towards the modified HP surface.In vitroadhesion, proliferation, and activation studies were implemented using NIH 3T3, RAW 264.7, and A172 cell lines to model fibroblast, macrophages and activated microglia, and astrocytes, respectively. For all cell types, the HP modified substrates elicited cell adhesion and sustained cell metabolic activity during a 3‐day culture. RAW 264.7 cell activation was evaluated using a tumor necrosis factor‐alpha (TNF‐α) enzyme‐linked immunosorbent assay and scanning electron microscope (SEM) imaging. Quantified TNF‐α levels from the LbL/HP cells were greater than the control substrate, however, investigation with SEM suggested these cells’ morphology was different from a typical activated state. A172 cell activation was evaluated by fluorescent staining of glial fibrillary acidic protein (GFAP) and SEM imaging, which revealed similarly low GFAP levels on both bare and HP modified substrates. A172 cell morphology showed mainly an undifferentiated and non‐activated state. These results help lay the groundwork to design the HP system for futurein vitroandin vivoinvestigations to ultimately realize stable long‐term neural device communication. © 2017 Wiley Periodicals, Inc. J Biomed Mater Res Part A: 105A: 3242–3250, 2017.

    more » « less