A double-edged sword in two-dimensional material science and technology is optically forbidden dark exciton. On the one hand, it is fascinating for condensed matter physics, quantum information processing, and optoelectronics due to its long lifetime. On the other hand, it is notorious for being optically inaccessible from both excitation and detection standpoints. Here, we provide an efficient and low-loss solution to the dilemma by reintroducing photonics bound states in the continuum (BICs) to manipulate dark excitons in the momentum space. In a monolayer tungsten diselenide under normal incidence, we demonstrated a giant enhancement (~1400) for dark excitons enabled by transverse magnetic BICs with intrinsic out-of-plane electric fields. By further employing widely tunable Friedrich-Wintgen BICs, we demonstrated highly directional emission from the dark excitons with a divergence angle of merely 7°. We found that the directional emission is coherent at room temperature, unambiguously shown in polarization analyses and interference measurements. Therefore, the BICs reintroduced as a momentum-space photonic environment could be an intriguing platform to reshape and redefine light-matter interactions in nearby quantum materials, such as low-dimensional materials, otherwise challenging or even impossible to achieve.
Bound states in the continuum (BICs) are widely studied for their ability to confine light, produce sharp resonances for sensing applications and serve as avenues for lasing action with topological characteristics. Primarily, the formation of BICs in periodic photonic band gap structures are driven by symmetry incompatibility; structural manipulation or variation of incidence angle from incoming light. In this work, we report two modalities for driving the formation of BICs in terahertz metasurfaces. At normal incidence, we experimentally confirm polarization driven symmetry-protected BICs by the variation of the linear polarization state of light. In addition, we demonstrate through strong coupling of two radiative modes the formation of capacitively-driven Freidrich-Wintgen BICs, exotic modes which occur in off-
- Publication Date:
- NSF-PAR ID:
- 10202161
- Journal Name:
- Communications Physics
- Volume:
- 3
- Issue:
- 1
- ISSN:
- 2399-3650
- Publisher:
- Nature Publishing Group
- Sponsoring Org:
- National Science Foundation
More Like this
-
Abstract -
Abstract Strongly correlated electronic systems can harbor a rich variety of quantum spin states. Understanding and controlling such spin states in quantum materials is of great current interest. Focusing on the simple binary system UPt3with ultrasound (US) as a probe we identify clear signatures in field sweeps demarkating new high field spin phases. Magnetostriction (MS) measurements performed up to 65 T also show signatures at the same fields confirming these phase transitions. At the very lowest temperatures (<200 mK) we also observe magneto-acoustic quantum oscillations which for
θ = 90° (B||c-axis) and vicinity abruptly become very strong in the 24.8–30 T range. High resolution magnetization measurements for this same angle reveal a continuous variation of the magnetization implying the subtle nature of the implied transitions. With B rotated away from the c-axis, the US signatures occur at nearly the same field. These transitions merge with the separate sequence of the well known metamagnetic transition which commences at 20 T forθ = 0° but moves to higher fields as 1/cosθ . This merge, suggesting a tricritical behavior, occurs atθ ≈ 51° from the ab-plane. This is an unique off-symmetry angle where the length change along the c-axis is precisely zero due to the anisotropic nature of MS in UPt3formore » -
Abstract Chipscale micro- and nano-optomechanical systems, hinging on the intangible radiation-pressure force, have shown their unique strength in sensing, signal transduction, and exploration of quantum physics with mechanical resonators. Optomechanical crystals, as one of the leading device platforms, enable simultaneous molding of the band structure of optical photons and microwave phonons with strong optomechanical coupling. Here, we demonstrate a new breed of optomechanical crystals in two-dimensional slab-on-substrate structures empowered by mechanical bound states in the continuum (BICs) at 8 GHz. We show symmetry-induced BIC emergence with optomechanical couplings up to
g /2π ≈ 2.5 MHz per unit cell, on par with low-dimensional optomechanical crystals. Our work paves the way towards exploration of photon-phonon interaction beyond suspended microcavities, which might lead to new applications of optomechanics from phonon sensing to quantum transduction. -
Electron transfer (ET) in donor–bridge–acceptor (DBA) compounds depends strongly on the structural and electronic properties of the bridge. Among the bridges that support donor–acceptor conjugation, alkyne bridges have attractive and unique properties: they are compact, possess linear structure permitting access to high symmetry DBA molecules, and allow torsional motion of D and A, especially for longer bridges. We report conformation dependent electron transfer dynamics in a set of novel DBA compounds featuring butadiyne (C4) bridge, N -isopropyl-1,8-napthalimide (NAP) acceptors, and donors that span a range of reduction potentials (trimethyl silane (Si-C4-NAP), phenyl (Ph-C4-NAP), and dimethyl aniline (D-C4-NAP)). Transient mid-IR absorption spectra of the CC bridge stretching modes, transient spectra in the visible range, and TD-DFT calculations were used to decipher the ET mechanisms. We found that the electronic excited state energies and, especially, the transition dipoles (S 0 → S n ) depend strongly on the dihedral angle ( θ ) between D and A and the frontier orbital symmetry, offering an opportunity to photo-select particular excited states with specific ranges of dihedral angles by exciting at chosen wavelengths. For example, excitation of D-C4-NAP at 400 nm predominantly prepares an S 1 excited state in the planar conformations ( θmore »
-
Abstract Chiral and helical Majorana fermions are two archetypal edge excitations in two-dimensional topological superconductors. They emerge from systems of different Altland–Zirnbauer symmetries and characterized by
and topological invariants respectively. It seems improbable to tune a pair of co-propagating chiral edge modes to counter-propagate in a single system without symmetry breaking. Here, we explore the peculiar behaviors of Majorana edge modes in topological superconductors with an additional ‘mirror’ symmetry which changes the bulk topological invariant to type. A theoretical toy model describing the proximity structure of a Chern insulator and ap x -wave superconductor is proposed and solved analytically to illustrate a direct transition between two topologically nontrivial phases. The weak pairing phase has two chiral Majorana edge modes, while the strong pairing phase is characterized by mirror-graded Chern number and hosts a pair of counter-propagating Majorana fermions protected by the mirror symmetry. The edge theory is worked out in detail, and implications to braiding of Majorana fermions are discussed.