skip to main content


Title: General and own-species attentional face biases
Humans demonstrate enhanced processing of human faces compared with animal faces, known as own-species bias. This bias is important for identifying people who may cause harm, as well as for recognizing friends and kin. However, growing evidence also indicates a more general face bias. Faces have high evolutionary importance beyond conspecific interactions, as they aid in detecting predators and prey. Few studies have explored the interaction of these biases together. In three experiments, we explored processing of human and animal faces, compared with each other and to nonface objects, which allowed us to examine both own-species and broader face biases. We used a dot-probe paradigm to examine human adults’ covert attentional biases for task-irrelevant human faces, animal faces, and objects. We replicated the own-species attentional bias for human faces relative to animal faces. We also found an attentional bias for animal faces relative to objects, consistent with the proposal that faces broadly receive privileged processing. Our findings suggest that humans may be attracted to a broad class of faces. Further, we found that while participants rapidly attended to human faces across all cue display durations, they attended to animal faces only when they had sufficient time to process them. Our findings reveal that the dot-probe paradigm is sensitive for capturing both own-species and more general face biases, and that each has a different attentional signature, possibly reflecting their unique but overlapping evolutionary importance.  more » « less
Award ID(s):
1653737
NSF-PAR ID:
10202571
Author(s) / Creator(s):
; ;
Date Published:
Journal Name:
Attention, Perception, & Psychophysics
ISSN:
1943-3921
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    Humans detect faces efficiently from a young age. Face detection is critical for infants to identify and learn from relevant social stimuli in their environments. Faces with eye contact are an especially salient stimulus, and attention to the eyes in infancy is linked to the emergence of later sociality. Despite the importance of both of these early social skills—attending to faces and attending to the eyes—surprisingly little is known about how they interact. We used eye tracking to explore whether eye contact influences infants' face detection. Longitudinally, we examined 2‐, 4‐, and 6‐month‐olds' (N = 65) visual scanning of complex image arrays with human and animal faces varying in eye contact and head orientation. Across all ages, infants displayed superior detection of faces with eye contact; however, this effect varied as a function of species and head orientation. Infants were more attentive to human than animal faces and were more sensitive to eye and head orientation for human faces compared to animal faces. Unexpectedly, human faces with both averted heads and eyes received the most attention. This pattern may reflect the early emergence of gaze following—the ability to look where another individual looks—which begins to develop around this age. Infants may be especially interested in averted gaze faces, providing early scaffolding for joint attention. This study represents the first investigation to document infants' attention patterns to faces systematically varying in their attentional states. Together, these findings suggest that infants develop early, specialized functional conspecific face detection.

     
    more » « less
  2. Abstract

    Face perception abilities in humans exhibit a marked expertise in distinguishing individual human faces at the expense of individual faces from other species (the other-species effect). In particular, one behavioural effect of such specialization is that human adults search for and find categories of non-human faces faster and more accurately than a specific non-human face, and vice versa for human faces. However, a recent visual search study showed that neural responses (event-related potentials, ERPs) were identical when finding either a non-human or human face. We used time-resolved multivariate pattern analysis of the EEG data from that study to investigate the dynamics of neural representations during a visual search for own-species (human) or other-species (non-human ape) faces, with greater sensitivity than traditional ERP analyses. The location of each target (i.e., right or left) could be decoded from the EEG, with similar accuracy for human and non-human faces. However, the neural patterns associated with searching for an exemplar versus a category target differed for human faces compared to non-human faces: Exemplar representations could be more reliably distinguished from category representations for human than non-human faces. These findings suggest that the other-species effect modulates the nature of representations, but preserves the attentional selection of target items based on these representations.

     
    more » « less
  3. Feature-based attention is known to enhance visual processing globally across the visual field, even at task-irrelevant locations. Here, we asked whether attention to object categories, in particular faces, shows similar location-independent tuning. Using EEG, we measured the face-selective N170 component of the EEG signal to examine neural responses to faces at task-irrelevant locations while participants attended to faces at another task-relevant location. Across two experiments, we found that visual processing of faces was amplified at task-irrelevant locations when participants attended to faces relative to when participants attended to either buildings or scrambled face parts. The fact that we see this enhancement with the N170 suggests that these attentional effects occur at the earliest stage of face processing. Two additional behavioral experiments showed that it is easier to attend to the same object category across the visual field relative to two distinct categories, consistent with object-based attention spreading globally. Together, these results suggest that attention to high-level object categories shows similar spatially global effects on visual processing as attention to simple, individual, low-level features. 
    more » « less
  4. Females generally attend more to social information than males; however, little is known about the early development of these sex differences. With eye tracking, 2‐month olds’ (N = 101; 44 females) social orienting to faces was measured within four‐item image arrays. Infants were more likely to detect human faces compared to objects, suggesting a functional face detection system. Unexpectedly, males looked longer at human faces than females, and only males looked faster and longer at human faces compared to objects. Females, in contrast, looked less at human faces relative to animal faces and objects, appearing socially disinterested. Notably, this is the first report of a male face detection advantage at any age. These findings suggest a unique stage in early infant social development.

     
    more » « less
  5. Abstract

    Most adults are better at recognizing recently encountered faces of their own race, relative to faces of other races. In adults, this race effect in face recognition is associated with differential neural representations of own‐ and other‐race faces in the fusiform face area (FFA), a high‐level visual region involved in face recognition. Previous research has linked these differential face representations in adults to viewers’ implicit racial associations. However, despite the fact that the FFA undergoes a gradual development which continues well into adulthood, little is known about the developmental time‐course of the race effect in FFA responses. Also unclear is how this race effect might relate to the development of face recognition or implicit associations with own‐ or other‐races during childhood and adolescence. To examine the developmental trajectory of these race effects, in a cross‐sectional study of European American (EA) children (ages 7–11), adolescents (ages 12–16) and adults (ages 18–35), we evaluated responses to adult African American (AA) and EA face stimuli, using functional magnetic resonance imaging and separate behavioral measures outside the scanner. We found that FFA responses to AA and EA faces differentiated during development from childhood into adulthood; meanwhile, the magnitudes of race effects increased in behavioral measures of face‐recognition and implicit racial associations. These three race effects were positively correlated, even after controlling for age. These findings suggest that social and perceptual experiences shape a protracted development of the race effect in face processing that continues well into adulthood.

     
    more » « less