skip to main content


Title: Mobile robotic platforms for the acoustic tracking of deep-sea demersal fishery resources

Knowing the displacement capacity and mobility patterns of industrially exploited (i.e., fished) marine resources is key to establishing effective conservation management strategies in human-impacted marine ecosystems. Acquiring accurate behavioral information of deep-sea fished ecosystems is necessary to establish the sizes of marine protected areas within the framework of large international societal programs (e.g., European Community H2020, as part of the Blue Growth economic strategy). However, such information is currently scarce, and high-frequency and prolonged data collection is rarely available. Here, we report the implementation of autonomous underwater vehicles and remotely operated vehicles as an aid for acoustic long-baseline localization systems for autonomous tracking of Norway lobster (Nephrops norvegicus), one of the key living resources exploited in European waters. In combination with seafloor moored acoustic receivers, we detected and tracked the movements of 33 tagged lobsters at 400-m depth for more than 3 months. We also identified the best procedures to localize both the acoustic receivers and the tagged lobsters, based on algorithms designed for off-the-shelf acoustic tags identification. Autonomous mobile platforms that deliver data on animal behavior beyond traditional fixed platform capabilities represent an advance for prolonged, in situ monitoring of deep-sea benthic animal behavior at meter spatial scales.

 
more » « less
NSF-PAR ID:
10203172
Author(s) / Creator(s):
 ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  
Publisher / Repository:
American Association for the Advancement of Science (AAAS)
Date Published:
Journal Name:
Science Robotics
Volume:
5
Issue:
48
ISSN:
2470-9476
Page Range / eLocation ID:
Article No. eabc3701
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    Globally, anthropogenic pressures are reducing the abundances of marine species and altering ecosystems through modification of trophic interactions. Yet, consumer declines also disrupt important bottom‐up processes, like nutrient recycling, which are critical for ecosystem functioning. Consumer‐mediated nutrient dynamics (CND) is now considered a major biogeochemical component of most ecosystems, but lacking long‐term studies, it is difficult to predict how CND will respond to accelerating disturbances in the wake of global change. To aid such predictions, we coupled empirical ammonium excretion rates with an 18‐year time series of the standing biomass of common benthic macroinvertebrates in southern California kelp forests. This time series of excretion rates encompassed an extended period of extreme ocean warming, disease outbreaks, and the abolishment of fishing at two of our study sites, allowing us to assess kelp forest CND across a wide range of environmental conditions. At their peak, reef invertebrates supplied an average of 18.3 ± 3.0 µmol NH4+ m−2 hr−1to kelp forests when sea stars were regionally abundant, but dropped to 3.5 ± 1.0 µmol NH4+ m−2 hr−1following their mass mortality due to disease during a prolonged period of extreme warming. However, a coincident increase in the abundance of the California spiny lobster,Palinurus interupptus(Randall, 1840), likely in response to both reduced fishing and a warmer ocean, compensated for much of the recycled ammonium lost to sea star mortality. Both lobsters and sea stars are widely recognized as key predators that can profoundly influence community structure in benthic marine systems. Our study is the first to demonstrate their importance in nutrient cycling, thus expanding their roles in the ecosystem. Climate change is increasing the frequency and severity of warming events, and rising human populations are intensifying fishing pressure in coastal ecosystems worldwide. Our study documents how these projected global changes can drive regime shifts in CND and fundamentally alter a critical ecosystem function.

     
    more » « less
  2. null (Ed.)
    Abstract Background Autonomous underwater vehicles (AUVs) and animal telemetry have become important tools for understanding the relationships between aquatic organisms and their environment, but more information is needed to guide the development and use of AUVs as effective animal tracking platforms. A forward-facing acoustic telemetry receiver (VR2Tx 69 kHz; VEMCO, Bedford, Nova Scotia) attached to a novel AUV (gliding robotic fish) was tested in a freshwater lake to (1) compare its detection efficiency (i.e., the probability of detecting an acoustic signal emitted by a tag) of acoustic tags (VEMCO model V8-4H 69 kHz) to stationary receivers and (2) determine if detection efficiency was related to distance between tag and receiver, direction of movement (toward or away from transmitter), depth, or pitch. Results Detection efficiency for mobile (robot-mounted) and stationary receivers were similar at ranges less than 300 m, on average across all tests, but detection efficiency for the mobile receiver decreased faster than for stationary receivers at distances greater than 300 m. Detection efficiency was higher when the robot was moving toward the transmitter than when moving away from the transmitter. Detection efficiency decreased with depth (surface to 4 m) when the robot was moving away from the transmitter, but depth had no significant effect on detection efficiency when the robot was moving toward the transmitter. Detection efficiency was higher when the robot was descending (pitched downward) than ascending (pitched upward) when moving toward the transmitter, but pitch had no significant effect when moving away from the transmitter. Conclusion Results suggested that much of the observed variation in detection efficiency is related to shielding of the acoustic signal by the robot body depending on the positions and orientation of the hydrophone relative to the transmitter. Results are expected to inform hardware, software, and operational changes to gliding robotic fish that will improve detection efficiency. Regardless, data on the size and shape of detection efficiency curves for gliding robotic fish will be useful for planning future missions and should be relevant to other AUVs for telemetry. With refinements, gliding robotic fish could be a useful platform for active tracking of acoustic tags in certain environments. 
    more » « less
  3. Mesobot, an autonomous underwater vehicle, addresses specific unmet needs for observing and sampling a variety of phenomena in the ocean’s midwaters. The midwater hosts a vast biomass, has a role in regulating climate, and may soon be exploited commercially, yet our scientific understanding of it is incomplete.Mesobothas the ability to survey and track slow-moving animals and to correlate the animals’ movements with critical environmental measurements.Mesobotwill complement existing oceanographic assets such as towed, remotely operated, and autonomous vehicles; shipboard acoustic sensors; and net tows. Its potential to perform behavioral studies unobtrusively over long periods with substantial autonomy provides a capability that is not presently available to midwater researchers. The 250-kilogram marine robot can be teleoperated through a lightweight fiber optic tether and can also operate untethered with full autonomy while minimizing environmental disturbance. We present recent results illustrating the vehicle’s ability to automatically track free-swimming hydromedusae (Solmissussp.) and larvaceans (Bathochordaeus stygius) at depths of 200 meters in Monterey Bay, USA. In addition to these tracking missions, the vehicle can execute preprogrammed missions collecting image and sensor data while also carrying substantial auxiliary payloads such as cameras, sonars, and samplers.

     
    more » « less
  4. null (Ed.)
    Marine ecosystems are vulnerable to climate driven events such as marine heatwaves yet we have a poor understanding of whether they will collapse or recover. Kelp forests are known to be susceptible, and there has been a rise in sea urchin barrens around the world. When temperatures increase so do physiological demands while food resources decline, tightening metabolic constraints. In this case study, we examine red abalone ( Haliotis rufescens ) looking at sublethal impacts and their prospects for recovery within kelp forests that have shifted to sea urchin barrens. Abalone are a recreationally fished species that once thrived in northern California’s bull kelp forests but have recently suffered mass mortalities since the 2014–2016 marine heatwave. Quantitative data exist on the health and reproduction of abalone both prior to and after the collapse. The survivors of the mass mortality show a 2-year lag in body and gonad condition indices. After the lag, body and gonad indexes decreased substantially, as did the relationship between shell length and body weight. Production of mature eggs per female declined by 99% ( p < 0.001), and the number of eggs per gram of female body weight (2,984/g) declined to near zero (9/g). The number of males with sperm was reduced by 33%, and the sperm abundance score was reduced by 28% ( p = 0.414). We observed that these reductions were for mature eggs and sperm while immature eggs and spermatids were still present in large numbers. In the lab, after reintroduction of kelp, weight gains were quickly lost following a second starvation period. This example illustrates how climate-driven declines in foundation species can suppress recovery of the system by impacting body condition and future reproduction of surviving individuals. Given the poor reproductive potential of the remaining abalone in northern California, coupled with ongoing mortality and low kelp abundances, we discuss the need to maintain the fishing moratorium and implement active abalone restoration measures. For fished species, such as abalone, this additional hurdle to recovery imposed by changes in climate is critical to understand and incorporate into resource management and restoration. 
    more » « less
  5. null (Ed.)
    The ocean plays a crucial role in the functioning of the Earth System and in the provision of vital goods and services. The United Nations (UN) declared 2021–2030 as the UN Decade of Ocean Science for Sustainable Development. The Roadmap for the Ocean Decade aims to achieve six critical societal outcomes (SOs) by 2030, through the pursuit of four objectives (Os). It specifically recognizes the scarcity of biological data for deep-sea biomes, and challenges the global scientific community to conduct research to advance understanding of deep-sea ecosystems to inform sustainable management. In this paper, we map four key scientific questions identified by the academic community to the Ocean Decade SOs: (i) What is the diversity of life in the deep ocean? (ii) How are populations and habitats connected? (iii) What is the role of living organisms in ecosystem function and service provision? and (iv) How do species, communities, and ecosystems respond to disturbance? We then consider the design of a global-scale program to address these questions by reviewing key drivers of ecological pattern and process. We recommend using the following criteria to stratify a global survey design: biogeographic region, depth, horizontal distance, substrate type, high and low climate hazard, fished/unfished, near/far from sources of pollution, licensed/protected from industry activities. We consider both spatial and temporal surveys, and emphasize new biological data collection that prioritizes southern and polar latitudes, deeper (> 2000 m) depths, and midwater environments. We provide guidance on observational, experimental, and monitoring needs for different benthic and pelagic ecosystems. We then review recent efforts to standardize biological data and specimen collection and archiving, making “sampling design to knowledge application” recommendations in the context of a new global program. We also review and comment on needs, and recommend actions, to develop capacity in deep-sea research; and the role of inclusivity - from accessing indigenous and local knowledge to the sharing of technologies - as part of such a global program. We discuss the concept of a new global deep-sea biological research program ‘ Challenger 150 ,’ highlighting what it could deliver for the Ocean Decade and UN Sustainable Development Goal 14. 
    more » « less