skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: SN 2016gsd: an unusually luminous and linear Type II supernova with high velocities
ABSTRACT We present observations of the unusually luminous Type II supernova (SN) 2016gsd. With a peak absolute magnitude of V = −19.95 ± 0.08, this object is one of the brightest Type II SNe, and lies in the gap of magnitudes between the majority of Type II SNe and the superluminous SNe. Its light curve shows little evidence of the expected drop from the optically thick phase to the radioactively powered tail. The velocities derived from the absorption in H α are also unusually high with the blue edge tracing the fastest moving gas initially at 20 000 km s−1, and then declining approximately linearly to 15 000 km s−1 over ∼100 d. The dwarf host galaxy of the SN indicates a low-metallicity progenitor which may also contribute to the weakness of the metal lines in its spectra. We examine SN 2016gsd with reference to similarly luminous, linear Type II SNe such as SNe 1979C and 1998S, and discuss the interpretation of its observational characteristics. We compare the observations with a model produced by the jekyll code and find that a massive star with a depleted and inflated hydrogen envelope struggles to reproduce the high luminosity and extreme linearity of SN 2016gsd. Instead, we suggest that the influence of interaction between the SN ejecta and circumstellar material can explain the majority of the observed properties of the SN. The high velocities and strong H α absorption present throughout the evolution of the SN may imply a circumstellar medium configured in an asymmetric geometry.  more » « less
Award ID(s):
1636626
PAR ID:
10203428
Author(s) / Creator(s):
; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; more » ; ; ; ; ; ; ; ; ; ; « less
Date Published:
Journal Name:
Monthly Notices of the Royal Astronomical Society
Volume:
493
Issue:
2
ISSN:
0035-8711
Page Range / eLocation ID:
1761 to 1781
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. null (Ed.)
    ABSTRACT ASASSN-18am/SN 2018gk is a newly discovered member of the rare group of luminous, hydrogen-rich supernovae (SNe) with a peak absolute magnitude of MV ≈ −20 mag that is in between normal core-collapse SNe and superluminous SNe. These SNe show no prominent spectroscopic signatures of ejecta interacting with circumstellar material (CSM), and their powering mechanism is debated. ASASSN-18am declines extremely rapidly for a Type II SN, with a photospheric-phase decline rate of ∼6.0 mag (100 d)−1. Owing to the weakening of H i and the appearance of He i in its later phases, ASASSN-18am is spectroscopically a Type IIb SN with a partially stripped envelope. However, its photometric and spectroscopic evolution shows significant differences from typical SNe IIb. Using a radiative diffusion model, we find that the light curve requires a high synthesized 56Ni mass $$M_{\rm Ni} \sim 0.4\, \rm {M_{\odot }}$$ and ejecta with high kinetic energy Ekin = (7–10) × 1051 erg. Introducing a magnetar central engine still requires $$M_{\rm Ni} \sim 0.3\, \rm {M_{\odot }}$$ and Ekin = 3 × 1051 erg. The high 56Ni mass is consistent with strong iron-group nebular lines in its spectra, which are also similar to several SNe Ic-BL with high 56Ni yields. The earliest spectrum shows ‘flash ionization’ features, from which we estimate a mass-loss rate of $$\dot{M}\approx 2\times 10^{-4} \, \rm \rm {M_{\odot }}\,yr^{-1}$$. This wind density is too low to power the luminous light curve by ejecta–CSM interaction. We measure expansion velocities as high as 17 000 $$\rm {\, km\, s^{-1}}$$ for Hα, which is remarkably high compared to other SNe II. We estimate an oxygen core mass of 1.8–3.4 M⊙ using the [O i] luminosity measured from a nebular-phase spectrum, implying a progenitor with a zero-age main-sequence mass of 19–26 M⊙. 
    more » « less
  2. ABSTRACT We present the results from a high-cadence, multiwavelength observation campaign of AT 2016jbu (aka Gaia16cfr), an interacting transient. This data set complements the current literature by adding higher cadence as well as extended coverage of the light-curve evolution and late-time spectroscopic evolution. Photometric coverage reveals that AT 2016jbu underwent significant photometric variability followed by two luminous events, the latter of which reached an absolute magnitude of MV ∼ −18.5 mag. This is similar to the transient SN 2009ip whose nature is still debated. Spectra are dominated by narrow emission lines and show a blue continuum during the peak of the second event. AT 2016jbu shows signatures of a complex, non-homogeneous circumstellar material (CSM). We see slowly evolving asymmetric hydrogen line profiles, with velocities of 500 km s−1 seen in narrow emission features from a slow-moving CSM, and up to 10 000 km s−1 seen in broad absorption from some high-velocity material. Late-time spectra (∼+1 yr) show a lack of forbidden emission lines expected from a core-collapse supernova and are dominated by strong emission from H, He i, and Ca ii. Strong asymmetric emission features, a bumpy light curve, and continually evolving spectra suggest an inhibit nebular phase. We compare the evolution of H α among SN 2009ip-like transients and find possible evidence for orientation angle effects. The light-curve evolution of AT 2016jbu suggests similar, but not identical, circumstellar environments to other SN 2009ip-like transients. 
    more » « less
  3. Abstract We present 1.3 mm (230 GHz) observations of the recent and nearby Type II supernova, SN 2023ixf, obtained with the Submillimeter Array (SMA) at 2.6–18.6 days after explosion. The observations were obtained as part the SMA Large Program, POETS (Pursuit of Extragalactic Transients with the SMA). We do not detect any emission at the location of SN 2023ixf, with the deepest limits of L ν (230 GHz) ≲ 8.6 × 10 25 erg s −1 Hz −1 at 2.7 and 7.7 days, and L ν (230 GHz) ≲ 3.4 × 10 25 erg s −1 Hz −1 at 18.6 days. These limits are about a factor of 2 times dimmer than the millimeter emission from SN 2011dh (IIb), about 1 order of magnitude dimmer compared to SN 1993J (IIb) and SN 2018ivc (IIL), and about 30 times dimmer than the most luminous nonrelativistic SNe in the millimeter band (Type IIb/Ib/Ic). Using these limits in the context of analytical models that include synchrotron self-absorption and free–free absorption, we place constraints on the proximate circumstellar medium around the progenitor star, to a scale of ∼2 × 10 15 cm, excluding the range M ̇ ∼ few × 10 − 6 − 10 − 2 M ⊙ yr −1 (for a wind velocity, v w = 115 km s −1 , and ejecta velocity, v ej ∼ (1 − 2) × 10 4 km s −1 ). These results are consistent with an inference of the mass-loss rate based on optical spectroscopy (∼2 × 10 −2 M ⊙ yr −1 for v w = 115 km s −1 ), but are in tension with the inference from hard X-rays (∼7 × 10 −4 M ⊙ yr −1 for v w = 115 km s −1 ). This tension may be alleviated by a nonhomogeneous and confined CSM, consistent with results from high-resolution optical spectroscopy. 
    more » « less
  4. Abstract When the ejecta of a supernova (SN) interact with the progenitor star's circumstellar environment, a strong shock is driven back into the ejecta, causing the material to become bright optically and in X-rays. Most notably, as the shock traverses the H-rich envelope, it begins to interact with metal-rich material. Thus, continued monitoring of bright and nearby SNe provides valuable clues about both the progenitor structure and its pre-SN evolution. Here we present late-time, multiepoch optical and Chandra X-ray spectra of the core-collapse SN, SN 1996cr. Magellan IMACS optical spectra taken in 2017 July and 2021 August show a very different spectrum from that seen in 2006 with broad, double-peaked optical emission lines of oxygen, argon, and sulfur with expansion velocities of ±4500 km s−1. Redshifted emission components are considerably fainter compared to the blueshifted components, presumably due to internal extinction from dust in the SN ejecta. Broad ±2400 km s−1Hαis also seen, which we infer is shocked progenitor pre-SN, mass-loss, H-rich material. Chandra data indicate a slow but steady decline in the overall X-ray luminosity, suggesting that the forward shock has broken through any circumstellar shell or torus, which is inferred from prior deep Chandra ACIS-S/HETG observations. The X-ray properties are consistent with what is expected from a shock breaking out into a lower-density environment. Though originally identified as a Type IIn SN, based upon late-time optical emission-line spectra, we argue that the SN 1996cr progenitor was partially or highly stripped, suggesting a Type IIb/Ib SN. 
    more » « less
  5. ABSTRACT We present optical and near-infrared (NIR) observations of the Type Icn supernova (SN Icn) 2022ann, the fifth member of its newly identified class of SNe. Its early optical spectra are dominated by narrow carbon and oxygen P-Cygni features with absorption velocities of ∼800 km s−1; slower than other SNe Icn and indicative of interaction with a dense, H/He-poor circumstellar medium (CSM) that is outflowing slower than typical Wolf–Rayet wind velocities of >1000 km s−1. We identify helium in NIR spectra 2 weeks after maximum and in optical spectra at 3 weeks, demonstrating that the CSM is not fully devoid of helium. Unlike other SNe Icn, the spectra of SN 2022ann never develop broad features from SN ejecta, including in the nebular phase. Compared to other SNe Icn, SN 2022ann has a low luminosity (o-band absolute magnitude of ∼−17.7), and evolves slowly. The bolometric light curve is well-modelled by 4.8 M⊙ of SN ejecta interacting with 1.3 M⊙ of CSM. We place an upper limit of 0.04 M⊙ of 56Ni synthesized in the explosion. The host galaxy is a dwarf galaxy with a stellar mass of 107.34 M⊙ (implied metallicity of log(Z/Z⊙) ≈ 0.10) and integrated star-formation rate of log (SFR) = −2.20 M⊙ yr−1; both lower than 97 per cent of galaxies observed to produce core-collapse supernovae, although consistent with star-forming galaxies on the galaxy Main Sequence. The low CSM velocity, nickel and ejecta masses, and likely low-metallicity environment disfavour a single Wolf–Rayet progenitor star. Instead, a binary companion is likely required to adequately strip the progenitor and produce a low-velocity outflow. 
    more » « less