skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Immobilized 13 C-labeled polyether chain ends confined to the crystallite surface detected by advanced NMR
A comprehensive 13 C nuclear magnetic resonance (NMR) approach for characterizing the location of chain ends of polyethers and polyesters, at the crystallite surface or in the amorphous layers, is presented. The OH chain ends of polyoxymethylene are labeled with 13 COO-acetyl groups and their dynamics probed by 13 C NMR with chemical shift anisotropy (CSA) recoupling. At least three-quarters of the chain ends are not mobile dangling cilia but are immobilized, exhibiting a powder pattern characteristic of the crystalline environment and fast CSA dephasing. The location and clustering of the immobilized chain ends are analyzed by spin diffusion. Fast 1 H spin diffusion from the amorphous regions shows confinement of chain ends to the crystallite surface, corroborated by fast 13 C spin exchange between chain ends. These observations confirm the principle of avoidance of density anomalies, which requires that chains terminate at the crystallite surface to stay out of the crowded interfacial layer.  more » « less
Award ID(s):
1726346
PAR ID:
10203444
Author(s) / Creator(s):
;
Date Published:
Journal Name:
Science Advances
Volume:
6
Issue:
37
ISSN:
2375-2548
Page Range / eLocation ID:
eabc0059
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract Herein, we demonstrate “direct”13C hyperpolarization of13C‐acetate via signal amplification by reversible exchange (SABRE). The standard SABRE homogeneous catalyst [Ir‐IMes; [IrCl(COD)(IMes)], (IMes=1,3‐bis(2,4,6‐trimethylphenyl), imidazole‐2‐ylidene; COD=cyclooctadiene)] was first activated in the presence of an auxiliary substrate (pyridine) in alcohol. Following addition of sodium 1‐13C‐acetate, parahydrogen bubbling within a microtesla magnetic field (i.e. under conditions of SABRE in shield enables alignment transfer to heteronuclei, SABRE‐SHEATH) resulted in positive enhancements of up to ≈100‐fold in the13C NMR signal compared to thermal equilibrium at 9.4 T. The present results are consistent with a mechanism of “direct” transfer of spin order from parahydrogen to13C spins of acetate weakly bound to the catalyst, under conditions of fast exchange with respect to the13C acetate resonance, but we find that relaxation dynamics at microtesla fields alter the optimal matching from the traditional SABRE‐SHEATH picture. Further development of this approach could lead to new ways to rapidly, cheaply, and simply hyperpolarize a broad range of substrates (e.g. metabolites with carboxyl groups) for various applications, including biomedical NMR and MRI of cellular and in vivo metabolism. 
    more » « less
  2. Abstract Solid‐state NMR measurements coupled with density functional theory (DFT) calculations demonstrate how hydrogen positions can be refined in a crystalline system. The precision afforded by rotational‐echo double‐resonance (REDOR) NMR to interrogate13C–1H distances is exploited along with DFT determinations of the13C tensor of carbonates (CO32−). Nearby1H nuclei perturb the axial symmetry of the carbonate sites in the hydrated carbonate mineral, hydromagnesite [4 MgCO3⋅Mg(OH)2⋅4 H2O]. A match between the calculated structure and solid‐state NMR was found by testing multiple semi‐local and dispersion‐corrected DFT functionals and applying them to optimize atom positions, starting from X‐ray diffraction (XRD)‐determined atomic coordinates. This was validated by comparing calculated to experimental13C{1H} REDOR and13C chemical shift anisotropy (CSA) tensor values. The results show that the combination of solid‐state NMR, XRD, and DFT can improve structure refinement for hydrated materials. 
    more » « less
  3. Abstract Signal Amplification By Reversible Exchange in SHield Enabled Alignment Transfer (SABRE‐SHEATH) is investigated to achieve rapid hyperpolarization of13C1spins of [1‐13C]pyruvate, using parahydrogen as the source of nuclear spin order. Pyruvate exchange with an iridium polarization transfer complex can be modulated via a sensitive interplay between temperature and co‐ligation of DMSO and H2O. Order‐unity13C (>50 %) polarization of catalyst‐bound [1‐13C]pyruvate is achieved in less than 30 s by restricting the chemical exchange of [1‐13C]pyruvate at lower temperatures. On the catalyst bound pyruvate, 39 % polarization is measured using a 1.4 T NMR spectrometer, and extrapolated to >50 % at the end of build‐up in situ. The highest measured polarization of a 30‐mM pyruvate sample, including free and bound pyruvate is 13 % when using 20 mM DMSO and 0.5 M water in CD3OD. Efficient13C polarization is also enabled by favorable relaxation dynamics in sub‐microtesla magnetic fields, as indicated by fast polarization buildup rates compared to theT1spin‐relaxation rates (e. g., ∼0.2 s−1versus ∼0.1 s−1, respectively, for a 6 mM catalyst‐[1‐13C]pyruvate sample). Finally, the catalyst‐bound hyperpolarized [1‐13C]pyruvate can be released rapidly by cycling the temperature and/or by optimizing the amount of water, paving the way to future biomedical applications of hyperpolarized [1‐13C]pyruvate produced via comparatively fast and simple SABRE‐SHEATH‐based approaches. 
    more » « less
  4. Abstract 19F NMR spectroscopy is an attractive and growing area of research with broad applications in biochemistry, chemical biology, medicinal chemistry, and materials science. We have explored fast magic angle spinning (MAS)19F solid‐state NMR spectroscopy in assemblies of HIV‐1 capsid protein. Tryptophan residues with fluorine substitution at the 5‐position of the indole ring were used as the reporters. The19F chemical shifts for the five tryptophan residues are distinct, reflecting differences in their local environment. Spin‐diffusion and radio‐frequency‐driven‐recoupling experiments were performed at MAS frequencies of 35 kHz and 40–60 kHz, respectively. Fast MAS frequencies of 40–60 kHz are essential for consistently establishing19F–19F correlations, yielding interatomic distances of the order of 20 Å. Our results demonstrate the potential of fast MAS19F NMR spectroscopy for structural analysis in large biological assemblies. 
    more » « less
  5. We demonstrate that natural isotopic abundance 2D heteronuclear correlation (HETCOR) solid-state NMR spectra can be used to significantly reduce or eliminate the broadening of 1 H and 13 C solid-state NMR spectra of organic solids due to anisotropic bulk magnetic susceptibility (ABMS). ABMS often manifests in solids with aromatic groups, such as active pharmaceutical ingredients (APIs), and inhomogeneously broadens the NMR peaks of all nuclei in the sample. Inhomogeneous peaks with full widths at half maximum (FWHM) of ∼1 ppm typically result from ABMS broadening and the low spectral resolution impedes the analysis of solid-state NMR spectra. ABMS broadening of solid-state NMR spectra has previously been eliminated using 2D multiple-quantum correlation experiments, or by performing NMR experiments on diluted materials or single crystals. However, these experiments are often infeasible due to their poor sensitivity and/or provide limited gains in resolution. 2D 1 H– 13 C HETCOR experiments have previously been applied to reduce susceptibility broadening in paramagnetic solids and we show that this strategy can significantly reduce ABMS broadening in diamagnetic organic solids. Comparisons of 1D solid-state NMR spectra and 1 H and 13 C solid-state NMR spectra obtained from 2D 1 H– 13 C HETCOR NMR spectra show that the HETCOR spectrum directly increases resolution by a factor of 1.5 to 8. The direct gain in resolution is determined by the ratio of the inhomogeneous 13 C/ 1 H linewidth to the homogeneous 1 H linewidth, with the former depending on the magnitude of the ABMS broadening and the strength of the applied field and the latter on the efficiency of homonuclear decoupling. The direct gains in resolution obtained using the 2D HETCOR experiments are better than that obtained by dilution. For solids with long proton longitudinal relaxation times, dynamic nuclear polarization (DNP) was applied to enhance sensitivity and enable the acquisition of 2D 1 H– 13 C HETCOR NMR spectra. 2D 1 H– 13 C HETCOR experiments were applied to resolve and partially assign the NMR signals of the form I and form II polymorphs of aspirin in a sample containing both forms. These findings have important implications for ultra-high field NMR experiments, optimization of decoupling schemes and assessment of the fundamental limits on the resolution of solid-state NMR spectra. 
    more » « less