skip to main content


Title: Detailing Racialized and Gendered Mechanisms of Undergraduate Precalculus and Calculus Classroom Instruction
Undergraduate mathematics education can be experienced in discouraging and marginalizing ways among Black students, Latin students, and white women. Precalculus and calculus courses, in particular, operate as gatekeepers that contribute to racialized and gendered attrition in persistence with mathematics coursework and pursuits in STEM (science, technology, engineering, and mathematics). However, student perceptions of instruction in these introductory mathematics courses have yet to be systematically examined as a contributor to such attrition. This paper presents findings from a study of 20 historically marginalized students’ perceptions of precalculus and calculus instruction to document features that they found discouraging and marginalizing. Our analysis revealed how students across different race-gender identities reported stereotyping as well as issues of representation in introductory mathematics classrooms and STEM fields as shaping their perceptions of instruction. These perceptions pointed to the operation of three racialized and gendered mechanisms in instruction: (i) creating differential opportunities for participation and support, (ii) limiting support from same-race, same-gender peers to manage negativity in instruction, and (iii) activating exclusionary ideas about who belongs in STEM fields. We draw on our findings to raise implications for research and practice in undergraduate mathematics education.  more » « less
Award ID(s):
1711712
NSF-PAR ID:
10203844
Author(s) / Creator(s):
; ; ; ;
Date Published:
Journal Name:
Cognition and Instruction
ISSN:
0737-0008
Page Range / eLocation ID:
1 to 33
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. BACKGROUND. Calculus instruction is underexamined as a source of racialized and gendered inequity in higher education, despite research that documents minoritized students’ marginalizing experiences in undergraduate mathematics classes. This study fills this research gap by investigating mathematics faculty’s perceptions of the significance of race and gender to calculus instruction at a large, public, historically white research university. METHODS. Theories of colorblind racism and dysconsciousness guided a critical discourse analysis of seven undergraduate calculus faculty’s perceptions of instructional events. FINDINGS. Our analysis revealed two dominant discourses: (i) Race and gender are insignificant social markers in undergraduate calculus; and (ii) Instructional events can be objectively deemed race- and gender-neutral. We illustrate how calculus faculty varyingly engaged these colorblind discourses as well as discourses that challenged such conceptions of instruction. We also highlight how faculty dysconsciousness in reports of instructional practices reflect potential operationalization of dominant discourses that reinforce colorblind racism. CONTRIBUTION. With limited research on faculty perspectives on racial equity in mathematics, our study documents how color-evasive, gender-neutral discourses among mathematics faculty shape orientations to instruction that reinforce the gatekeeping role of calculus in STEM higher education. Implications are provided for race- and gender-conscious undergraduate mathematics instruction and faculty development. 
    more » « less
  2. Precalculus and calculus are considered gatekeeper courses because of their academic challenge and status as requirements for STEM (science, technology, engineering, and mathematics) and non-STEM majors alike. Despite college mathematics often being seen as a neutral space, the field has identified ways that expectations, interactions, and instruction are racialized and gendered. This article uses the concept of labor to examine responses from 20 students from historically marginalized groups to events identified as discouraging in precalculus and calculus instruction. Findings illustrate how Black students, Latina/o students, and white women engage in emotional and cognitive labor in response to discouraging events. Additionally, to manage this labor, students named coping strategies that involved moderating their participation to avoid or minimize the racialized and gendered impact of undergraduate mathematics instruction. 
    more » « less
  3. A. Weinberg, D. Moore-Russo (Ed.)
    Undergraduate mathematics instruction contributes to marginalization among women and racially minoritized individuals’ experiences. This report presents an analysis from a larger study that details variation in minoritized students’ perceptions of potentially marginalizing events in undergraduate mathematics instruction. With past research on undergraduate mathematics experiences largely focused on students’ post-hoc reflections and one or two race-gender intersections, this analysis extends prior work by attending to variation in students’ in-the-moment perceptions of mathematics instruction across various race-gender intersections. Findings highlight how issues of underrepresentation, stereotypes, and instructor care contributed to interpretations of instruction-related events as potentially marginalizing. The report concludes with implications for teaching practices in undergraduate mathematics that academically support and socially affirm students from historically marginalized backgrounds. 
    more » « less
  4. Abstract

    Several studies have shown that the use of active learning strategies can help improve student success and persistence in STEM-related fields. Despite this, widespread adoption of active learning strategies is not yet a reality as institutional change can be difficult to enact. Accordingly, it is important to understand how departments in institutions of higher education can initiate and sustain meaningful change. We use interview data collected from two institutions to examine how leaders at two universities contributed to the initiation, implementation, and sustainability of active learning in undergraduate calculus and precalculus courses. At each institution, we spoke to 27 stakeholders involved in changes (including administrators, department chairs, course coordinators, instructors, and students). Our results show that the success of these changes rested on the ability of leaders to stimulate significant cultural shifts within the mathematics department. We use communities of transformation theory and the four-frame model of organization change in STEM departments in order to better understand how leaders enabled such cultural shifts. Our study highlights actions leaders may take to support efforts at improving education by normalizing the use of active learning strategies and provides potential reasons for the efficacy of such actions. These results underscore the importance of establishing flexible, distributed leadership models that attend to the cultural and operational norms of a department. Such results may inform leaders at other institutions looking to improve education in their STEM departments.

     
    more » « less
  5. null (Ed.)
    This research paper studies the challenges that mathematics faculty and graduate teaching assistants (GTAs) faced when moving active and collaborative calculus courses from in-person to virtual instruction. As part of a larger pedagogical change project (described below), the math department at a public Research-1 university began transitioning pre-calculus and calculus courses to an active and collaborative learning (ACL) format in Fall 2019. The change began with the introduction of collaborative worksheets in recitations which were led by GTAs and supported by undergraduate learning assistants (LAs). Students recitation periods collaboratively solving the worksheet problems on whiteboards. When COVID-19 forced the rapid transition to online teaching, these ACL efforts faced an array of challenges. Faculty and GTA reflections on the changes to teaching and learning provide insight into how instructional staff can be supported in implementing ACL across various modes of instruction. The calculus teaching change efforts discussed in this paper are part of an NSF-supported project that aims to make ACL the default method of instruction in highly enrolled gateway STEM courses across the institution. The theoretical framework for the project builds on existing work on grassroots change in higher education (Kezar and Lester, 2011) to study the effect of communities of practice on changing teaching culture. The project uses course-based communities of practice (Wenger, 1999) that include instructors, GTAs, and LAs working together to design and enact teaching change in the targeted courses alongside ongoing professional development for GTAs and LAs. Six faculty and five GTAs involved in the teaching change effort in mathematics were interviewed after the Spring 2020 semester ended. Interview questions focused on faculty and GTA experiences implementing active learning after the rapid transition to online teaching. A grounded coding scheme was used to identify common themes in the challenges faced by instructors and GTAs as they moved online and in the impacts of technology, LA support, and the department community of practice on the move to online teaching. Technology, including both access and capabilities, emerged as a common barrier to student engagement. A particular barrier was students’ reluctance to share video or participate orally in sessions that were being recorded, making group work more difficult than it had been in a physical classroom. In addition, most students lacked access to a tablet for freehand writing, presenting a significant hurdle for sharing mathematical notation when physical whiteboards were no longer an option. These challenges point to the importance of incorporating flexibility in active learning implementation and in the professional development that supports teaching changes toward active learning, since what is conceived for a collaborative physical classroom may be implemented in a much different environment. The full paper will present a detailed analysis of the data to better understand how faculty and GTA experiences in the transition to online delivery can inform planning and professional development as the larger institutional change effort moves forward both in mathematics and in other STEM fields. 
    more » « less