skip to main content


Title: SubSpace Capsule Network
Convolutional neural networks (CNNs) have become a key asset to most of fields in AI. Despite their successful performance, CNNs suffer from a major drawback. They fail to capture the hierarchy of spatial relation among different parts of an entity. As a remedy to this problem, the idea of capsules was proposed by Hinton. In this paper, we propose the SubSpace Capsule Network (SCN) that exploits the idea of capsule networks to model possible variations in the appearance or implicitly-defined properties of an entity through a group of capsule subspaces instead of simply grouping neurons to create capsules. A capsule is created by projecting an input feature vector from a lower layer onto the capsule subspace using a learnable transformation. This transformation finds the degree of alignment of the input with the properties modeled by the capsule subspace.We show that SCN is a general capsule network that can successfully be applied to both discriminative and generative models without incurring computational overhead compared to CNN during test time. Effectiveness of SCN is evaluated through a comprehensive set of experiments on supervised image classification, semi-supervised image classification and high-resolution image generation tasks using the generative adversarial network (GAN) framework. SCN significantly improves the performance of the baseline models in all 3 tasks.  more » « less
Award ID(s):
1741431
NSF-PAR ID:
10203906
Author(s) / Creator(s):
; ;
Date Published:
Journal Name:
Proceedings of the AAAI Conference on Artificial Intelligence
Volume:
34
Issue:
07
ISSN:
2159-5399
Page Range / eLocation ID:
10745 to 10753
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Medical image segmentation has been so far achieving promising results with Convolutional Neural Networks (CNNs). However, it is arguable that in traditional CNNs, its pooling layer tends to discard important information such as positions. Moreover, CNNs are sensitive to rotation and ane transformation. Capsule network is a data-ecient network design proposed to overcome such limitations by replacing pooling layers with dynamic routing and convolutional strides, which aims to preserve the part-whole relationships. Capsule network has shown a great performance in image recognition and natural language processing, but applications for medical image segmentation, particularly volumetric image segmentation, has been limited. In this work, we propose 3D-UCaps, a 3D voxel-based Capsule network for medical volumetric image segmentation. We build the concept of capsules into a CNN by designing a network with two pathways: the rst pathway is encoded by 3D Capsule blocks, whereas the second pathway is decoded by 3D CNNs blocks. 3D-UCaps, therefore inherits the merits from both Capsule network to preserve the spatial relationship and CNNs to learn visual representation. We conducted experiments on various datasets to demonstrate the robustness of 3D-UCaps including iSeg-2017, LUNA16, Hippocampus, and Cardiac, where our method outperforms previous Capsule networks and 3D-Unets. 
    more » « less
  2. null (Ed.)
    Capsule Networks (CapsNets) have demonstrated to be a promising alternative to Convolutional Neural Networks (CNNs). However, they often fall short of state-of-the-art accuracies on large-scale high-dimensional datasets. We propose a Detail-Oriented Capsule Network (DECAPS) that combines the strength of CapsNets with several novel techniques to boost its classification accuracies. First, DECAPS uses an Inverted Dynamic Routing (IDR) mechanism to group lowerlevel capsules into heads before sending them to higher-level capsules. This strategy enables capsules to selectively attend to small but informative details within the data which may be lost during pooling operations in CNNs. Second, DECAPS employs a Peekaboo training procedure, which encourages the network to focus on fine-grained information through a second-level attention scheme. Finally, the distillation process improves the robustness of DECAPS by averaging over the original and attended image region predictions. We provide extensive experiments on the CheXpert and RSNA Pneumonia datasets to validate the effectiveness of DECAPS. Our networks achieve state-of-the-art accuracies not only in classification (increasing the average area under ROC curves from 87.24% to 92.82% on the CheXpert dataset) but also in the weaklysupervised localization of diseased areas (increasing average precision from 41.7% to 80% for the RSNA Pneumonia detection dataset). 
    more » « less
  3. null (Ed.)
    We present a 3D capsule module for processing point clouds that is equivariant to 3D rotations and translations, as well as invariant to permutations of the input points. The operator receives a sparse set of local reference frames, computed from an input point cloud and establishes end-to-end transformation equivariance through a novel dynamic routing procedure on quaternions. Further, we theoretically connect dynamic routing between capsules to the well-known Weiszfeld algorithm, a scheme for solving iterative re-weighted least squares (IRLS) problems with provable convergence properties. It is shown that such group dynamic routing can be interpreted as robust IRLS rotation averaging on capsule votes, where information is routed based on the final inlier scores. Based on our operator, we build a capsule network that disentangles geometry from pose, paving the way for more informative descriptors and a structured latent space. Our architecture allows joint object classification and orientation estimation without explicit supervision of rotations. We validate our algorithm empirically on common benchmark datasets. 
    more » « less
  4. null (Ed.)
    We present a 3D capsule module for processing point clouds that is equivariant to 3D rotations and translations, as well as invariant to permutations of the input points. The operator receives a sparse set of local reference frames, computed from an input point cloud and establishes end-to-end transformation equivariance through a novel dynamic routing procedure on quaternions. Further, we theoretically connect dynamic routing between capsules to the well-known Weiszfeld algorithm, a scheme for solving iterative re-weighted least squares (IRLS) problems with provable convergence properties. It is shown that such group dynamic routing can be interpreted as robust IRLS rotation averaging on capsule votes, where information is routed based on the final inlier scores. Based on our operator, we build a capsule network that disentangles geometry from pose, paving the way for more informative descriptors and a structured latent space. Our architecture allows joint object classification and orientation estimation without explicit supervision of rotations. We validate our algorithm empirically on common benchmark datasets. 
    more » « less
  5. ABSTRACT

    Studies of cosmology, galaxy evolution, and astronomical transients with current and next-generation wide-field imaging surveys like the Rubin Observatory Legacy Survey of Space and Time are all critically dependent on estimates of photometric redshifts. Capsule networks are a new type of neural network architecture that is better suited for identifying morphological features of the input images than traditional convolutional neural networks. We use a deep capsule network trained on ugriz images, spectroscopic redshifts, and Galaxy Zoo spiral/elliptical classifications of ∼400 000 Sloan Digital Sky Survey galaxies to do photometric redshift estimation. We achieve a photometric redshift prediction accuracy and a fraction of catastrophic outliers that are comparable to or better than current methods for SDSS main galaxy sample-like data sets (r ≤ 17.8 and zspec ≤ 0.4) while requiring less data and fewer trainable parameters. Furthermore, the decision-making of our capsule network is much more easily interpretable as capsules act as a low-dimensional encoding of the image. When the capsules are projected on a two-dimensional manifold, they form a single redshift sequence with the fraction of spirals in a region exhibiting a gradient roughly perpendicular to the redshift sequence. We perturb encodings of real galaxy images in this low-dimensional space to create synthetic galaxy images that demonstrate the image properties (e.g. size, orientation, and surface brightness) encoded by each dimension. We also measure correlations between galaxy properties (e.g. magnitudes, colours, and stellar mass) and each capsule dimension. We publicly release our code, estimated redshifts, and additional catalogues at https://biprateep.github.io/encapZulate-1.

     
    more » « less