skip to main content


Title: Preservice Elementary Teachers’ Educative Making Experiences Redux
In this descriptive brief paper three science education university faculty and a postdoctoral researcher share the difference between the delivery, execution, and assessment of the same educative making learning opportunities assigned to science education preservice teachers first in face-to-face undergraduate courses taught before the COVID-19 pandemic, and then in an online version of the same courses. This presentation may inform the work of constituents of science and teacher education and maker learning communities who want to employ best practices as they modify curriculum for virtual delivery. (Funding-NSF Grant 1842342.)  more » « less
Award ID(s):
1842343
NSF-PAR ID:
10203908
Author(s) / Creator(s):
; ; ;
Editor(s):
Langran, E.
Date Published:
Journal Name:
SITE Interactive Online
Page Range / eLocation ID:
632-638
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. A substantial percentage of engineering graduates, especially those from traditionally underrepresented groups, complete their lower-division education at a community college before transferring to a university to earn their degree. However, engineering programs at many community colleges, because of their relatively small scale with often only one permanent faculty member, struggle to offer lower-division engineering courses with the breadth and frequency needed by students for effective and efficient transfer preparation. As a result, engineering education becomes impractical and at times inaccessible for many community college students. Through a grant from the National Science Foundation Improving Undergraduate STEM Education program (NSF IUSE), three community colleges from Northern California collaborated to increase the availability and accessibility of the engineering curriculum by developing resources and teaching strategies to enable small-to-medium sized community college engineering programs to support a comprehensive set of lower-division engineering courses. These resources were developed for use in a variety of delivery formats (e.g., fully online, online/hybrid, flipped face-to-face, etc.), providing flexibility for local community colleges to leverage according to their individual needs. This paper focuses on the development and testing of the resources for an introductory Materials Science course with 3-unit lecture and 1-unit laboratory components. Although most of the course resources were developed to allow online delivery if desired, the laboratory curriculum was designed to require some limited face-to-face interaction with traditional materials testing equipment. In addition to the resources themselves, the paper presents the results of the pilot implementation of the course during the Spring 2015 semester, taught using a flipped delivery format consisting of asynchronous remote viewing of lecture videos and face-to-face student-centered problem-solving and lab exercises. These same resources were then implemented in a flipped format by an instructor who had never previously taught the course, at a community college that did not have its own materials laboratory facilities. Site visits were arranged with a nearby community college to afford students an opportunity to complete certain lab activities using traditional materials testing equipment. In both implementations of the course, student surveys and interviews were used to determine students’ perceptions of the effectiveness of the course resources, student use of these resources, and overall satisfaction with the course. Additionally, student performance on assessments was compared with that of traditional lecture delivery of the courses in prior years. 
    more » « less
  2. The 2012 President’s Council of Advisors on Science and Technology (PCAST) report “Engage to Excel: Producing One Million Additional College Graduates with Degrees in Science,Technology, Engineering, and Mathematics” indicated that addressing the retention problem in the first two years of college is the most promising and cost-effective strategy to produce the STEM professionals needed in order to retain US historical preeminence in science and technology. The California Community College System, with its 112 community colleges and 71 off-campus centers enrolling approximately 2.3 million students (roughly a third of all US community college students) is in a prime position to grow the future STEM workforce.However, in the face of shrinking resources and increasing costs and other barriers, an effective approach is needed in order to capitalize on this opportunity. One prong in this approach is to more fully exploit modern technological capabilities to reduce costs, broaden access, and improve educational productivity. This paper presents preliminary results of a collaborative project, Creating Alternative Learning Strategies for Transfer Engineering Programs (CALSTEP), which aims to strengthen community college engineering programs using distance education and other alternative delivery strategies that will enable small-to-medium community college engineering programs to provide their students access to lower-division engineering courses needed to be competitive for transfer to four-year engineering programs. Funded by a three-year grant through the National Science Foundation Improving Undergraduate STEM Education (NSF IUSE) program, CALSTEP will leverage existing educational resources and develop new ones for online lecture courses, as well as core engineering laboratory courses that are delivered either completely online, or with limited face-to-face interactions. The initial areas of focus for laboratory course development are: Introduction to Engineering, Engineering Graphics, Materials Science, and Circuit Analysis. CALSTEP will also develop alternative models of flipped classroom instruction to improve student success and enhance student access to engineering courses that otherwise could not be supported in traditional delivery modes due to low enrollment. The project will iteratively evaluate and refine the curriculum over the three-year grant period, as well as train other community college engineering faculty in the effective use of the curriculum and resources developed. 
    more » « less
  3. Access to lower-division engineering courses in the community college substantially influences whether or not community college students pursue and successfully achieve an engineering degree. With about 60% of students from under-represented minority (URM) groups beginning their post-secondary education in the community colleges, providing this access is critical if the US is to diversify and expand its engineering workforce. Still many community college lack the faculty, equipment, or local expertise to offer a comprehensive transfer engineering program, thus compromising participation in engineering courses for underrepresented groups as well as for students residing in rural and remote areas, where distance is a key barrier to post-secondary enrollment. An additional obstacle to participation is the need for so many community college students to work, many in inflexible positions that compromise their ability to attend traditional face-to-face courses. Through a grant from the National Science Foundation Improving Undergraduate STEM Education program (NSF IUSE), three community colleges from Northern California collaborated to increase the availability and accessibility of the engineering curriculum by developing resources and teaching strategies to enable small-to-medium community college engineering programs to support a comprehensive set of lower-division engineering courses that are delivered either completely online, or with limited face-to-face interactions. This paper focuses on the development and testing of the teaching and learning resources for Introduction to Engineering, a three-unit course (two units of lecture and one unit of lab). The course has special significance as a gateway course for students who without the role models that their middle class peers so often have readily available enter college with very limited awareness of the exciting projects and fulfilling careers the engineering profession offers as well as with apprehension about their ability to succeed in a demanding STEM curriculum. To this end, the course covers academic success skills in engineering including mindset and metacognition, academic pathways, career awareness and job functions in the engineering profession, team building and communications, the engineering design process, and a broad range of fundamental and engaging topics and projects in engineering including electronics, basic test equipment, programming in MATLAB and Arduino, robotics, bridge design, and materials science. The paper presents the results of a pilot implementation of the teaching materials in a regular face-to-face course which will be used to inform subsequent on-line delivery. Additionally, student surveys and interviews are used to assess students’ perceptions of the effectiveness of the course resources, along with their sense of self-efficacy and identity as aspiring engineers. 
    more » « less
  4. The devastation caused by recent natural disasters, such as earthquakes, tsunamis, and hurricanes, has increased awareness regarding the importance of providing interdisciplinary solutions to complex infrastructure challenges. In October 2018, the University of Puerto Rico received a Hispanic Serving Institution (HSI) collaborative award from the National Science Foundation (NSF) to develop an integrated curriculum on resilient and sustainable infrastructure. The project titled “Resilient Infrastructure and Sustainability Education – Undergraduate Program (RISE-UP) aims to educate future environmental designers and engineers to design and build a more resilient and sustainable infrastructure for Puerto Rico. This paper presents the design, initial implementation, and assessment of a curriculum encompassing synergistic interactions among these four domains: integrated project delivery, user-centered design, interdisciplinary problem-solving, and sustainability and resiliency. The project seeks to foster interdisciplinary problem-solving skills involving architects, engineers and construction managers, in order to better prepare them to face and provide solutions to minimize the impact of extreme natural environment events on infrastructure. The new curriculum stresses on problem-settings, the role that participants have on defining the characteristics of the problems that have to be solved, learning in action, reflecting on the process, and communication between the different stakeholders. This multisite and interdisciplinary program provides students with the necessary support, knowledge, and skills necessary to design and build resilient and sustainable infrastructure. This instructional endeavor consists of four courses designed to reduce gradually the difference between what students are able to accomplish with support structures and what students are able to accomplish on their own. To maximize and enhance the educational experience, the program blends a technology-infused classroom learning with broad co-curricular opportunities such as site visits, undergraduate research, and internships. As students advance in the program, they will be exposed and required to perform increasingly complex tasks. During the first year of the program, the following outcomes were achieved: 1) implementation of the faculty teamwork process to develop courses and analyze cases from an interdisciplinary perspective, 2) development and approval of an interdisciplinary curriculum on resilient and sustainable infrastructure, 3) development of case studies on situations associated with disaster and interdisciplinary responses, 4) development of a case study database, 5) establishment of an Advisory Board with government agency representatives and faculty, and 6) recruitment and enrollment of 30 students as the first RISE-UP cohort. In summary, the body of knowledge acquired from this project can serve as a model that can be replicated to develop and enhance academic programs at other institutions. 
    more » « less
  5. Community colleges provide an important pathway for many prospective engineering graduates, especially those from traditionally underrepresented groups. However, due to a lack of facilities, resources, student demand and/or local faculty expertise, the breadth and frequency of engineering course offerings is severely restricted at many community colleges. This in turn presents challenges for students trying to maximize their transfer eligibility and preparedness. Through a grant from the National Science Foundation Improving Undergraduate STEM Education program (NSF IUSE), three community colleges from Northern California collaborated to increase the availability and accessibility of a comprehensive lower-division engineering curriculum, even at small-to-medium sized community colleges. This was accomplished by developing resources and teaching strategies that could be employed in a variety of delivery formats (e.g., fully online, online/hybrid, flipped face-to-face, etc.), providing flexibility for local community colleges to leverage according to their individual needs. This paper focuses on the iterative development, testing, and refining of the resources for an introductory Materials Science course with 3-unit lecture and 1-unit laboratory components. This course is required as part of recently adopted statewide model associate degree curricula for transfer into Civil, Mechanical, Aerospace, and Manufacturing engineering bachelor’s degree programs at California State Universities. However, offering such a course is particularly challenging for many community colleges, because of a lack of adequate expertise and/or laboratory facilities and equipment. Consequently, course resources were developed to help mitigate these challenges by streamlining preparation for instructors new to teaching the course, as well as minimizing the face-to-face use of traditional materials testing equipment in the laboratory portion of the course. These same resources can be used to support online hybrid and other alternative (e.g., emporium) delivery approaches. After initial pilot implementation of the course during the Spring 2015 semester by the curriculum designer in a flipped student-centered format, these same resources were then implemented by an instructor who had never previously taught the course, at a different community college that did not have its own materials laboratory facilities. A single site visit was arranged with a nearby community college to afford students an opportunity to complete certain lab activities using traditional materials testing equipment. Lessons learned during this attempt were used to inform curriculum revisions, which were evaluated in a repeat offering the following year. In all implementations of the course, student surveys and interviews were used to determine students’ perceptions of the effectiveness of the course resources, student use of these resources, and overall satisfaction with the course. Additionally, student performance on objective assessments was compared with that of traditional lecture delivery of the course by the curriculum designer in prior years. During initial implementations of the course, results from these surveys and assessments revealed low levels of student satisfaction with certain aspects of the flipped approach and course resources, as well as reduced learning among students at the alternate institution. Subsequent modifications to the curriculum and delivery approach were successful in addressing most of these deficiencies. 
    more » « less