skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Rebound of shelf water salinity in the Ross Sea
Abstract Antarctic Bottom Water (AABW) supplies the lower limb of the global overturning circulation and ventilates the abyssal ocean. In recent decades, AABW has warmed, freshened and reduced in volume. Ross Sea Bottom Water (RSBW), the second largest source of AABW, has experienced the largest freshening. Here we use 23 years of summer measurements to document temporal variability in the salinity of the Ross Sea High Salinity Shelf Water (HSSW), a precursor to RSBW. HSSW salinity decreased between 1995 and 2014, consistent with freshening observed between 1958 and 2008. However, HSSW salinity rebounded sharply after 2014, with values in 2018 similar to those observed in the mid-late 1990s. Near-synchronous interannual fluctuations in salinity observed at five locations on the continental shelf suggest that upstream preconditioning and large-scale forcing influence HSSW salinity. The rate, magnitude and duration of the recent salinity increase are unusual in the context of the (sparse) observational record.  more » « less
Award ID(s):
1644073
PAR ID:
10204045
Author(s) / Creator(s):
; ; ; ; ; ; ;
Date Published:
Journal Name:
Nature Communications
Volume:
10
Issue:
1
ISSN:
2041-1723
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract High Salinity Shelf Water (HSSW) formed in the Ross Sea of Antarctica is a precursor to Antarctic Bottom Water (AABW), a water mass that constitutes the bottom limb of the global overturning circulation. HSSW production rates are poorly constrained, as in-situ observations are scarce. Here, we present high-vertical-and-temporal-resolution salinity time series collected in austral winter 2017 from a mooring in Terra Nova Bay (TNB), one of two major sites of HSSW production in the Ross Sea. We calculate an annual-average HSSW production rate of ~0.4Sv(106m3s−1), which we use to ground truth additional estimates across 2012–2021 made from parametrized net surface heat fluxes. We find sub-seasonal and interannual variability on the order of$$0.1$$ 0.1 $${Sv}$$ S v , with a strong dependence on variability in open-water area that suggests a sensitivity of TNB HSSW production rates to changes in the local wind regime and offshore sea ice pack. 
    more » « less
  2. Abstract Antarctic Bottom Water (AABW), which fills the global ocean abyss, is derived from dense water that forms in several distinct Antarctic shelf regions. Previous modeling studies have reached conflicting conclusions regarding export pathways of AABW across the Southern Ocean and the degree to which AABW originating from distinct source regions are blended during their export. This study addresses these questions using passive tracer deployments in a 61‐year global high‐resolution (0.1°) ocean/sea‐ice simulation. Two distinct export “conduits” are identified: Weddell Sea‐ and Prydz Bay‐sourced AABW are blended together and exported mainly to the Atlantic and Indian Oceans, while Ross Sea‐ and Adelie Land‐sourced AABW are exported mainly to the Pacific Ocean. Northward transport of each tracer occurs almost exclusively (>90%) within a single conduit. These findings imply that regional changes in AABW production may impact the three‐dimensional structure of the global overturning circulation. 
    more » « less
  3. Abstract The Northeast U.S. continental shelf (NEUS) is a highly productive and economically important region that has undergone substantial changes in recent years. Warming exceeds the global average and several episodes of anomalously warm, sustained temperatures have had profound impacts on regional fisheries. A majority of recent research studies focused on the analysis of temperature; however, salinity can serve as a valuable tracer as well. With now more than a decade of remote‐sensing sea surface salinity data, we shed new light onto salinity variability in the region with focus on the Mid‐Atlantic Bight and assess its role for modulating stratification on the shelf using historical hydrographic data. Local river discharge drives decreasing salinities not only in spring and summer on the shelf but also in the Slope Sea. In spring, fresher water aids the build‐up of stratification and a low salinity surface layer extends to the shelf break above the pycnocline by the beginning of summer. An observed salinification in the fall is linked to offshore forcing over the slope associated with the presence of Warm Core Rings. Coherent low‐frequency salinity variability is found over the slope and shelf, highlighting that shelf conditions are significantly impacted by offshore variability. Conditions on the NEUS in 2015 were characterized by anomalously high salinities, associated with a northerly position of the Gulf Stream. A freshening between 2015 and 2021, is in agreement with increased river cumulative discharge as well as lower offshore salinities. Overall, salinity serves as a valuable additional tracer of these multi‐variate processes. 
    more » « less
  4. Abstract The export of Antarctic Bottom Water (AABW) supplies the bottom cell of the global overturning circulation and plays a key role in regulating climate. This AABW outflow must cross, and is therefore mediated by, the Antarctic Circumpolar Current (ACC). Previous studies present widely varying conceptions of the role of the ACC in directing AABW across the Southern Ocean, suggesting either that AABW may be zonally recirculated by the ACC, or that AABW may flow northward within deep western boundary currents (DWBC) against bathymetry. In this study the authors investigate how the forcing and geometry of the ACC influences the transport and transformation of AABW using a suite of process-oriented model simulations. The model exhibits a strong dependence on the elevation of bathymetry relative to AABW layer thickness: higher meridional ridges suppress zonal AABW exchange, increase the strength of flow in the DWBC, and reduce the meridional variation in AABW density across the ACC. Furthermore, the transport and transformation vary with density within the AABW layer, with denser varieties of AABW being less efficiently transported between basins. These findings indicate that changes in the thickness of the AABW layer, for example, due to changes in Antarctic shelf processes, and tectonic changes in the sea floor shape may alter the pathways and transformation of AABW across the ACC. Significance StatementThe ocean plays an outsized role in the movement of heat and trace gases around Earth, and the northward export of dense Antarctic Bottom Water is a crucial component of this climate-regulating process. This study aims to understand what sets the pathways of Antarctic Bottom Water as it travels northward across the Antarctic Circumpolar Current, and thus what controls its partitioning between the Atlantic, Indian, and Pacific basins. Our results highlight the importance of seafloor elevation relative to the thickness of the Antarctic Bottom Water layer for directing the flow northward versus between basins. This study motivates future investigation of long-term changes in Antarctic Bottom Water properties and their consequences for its global distribution. 
    more » « less
  5. Dense, cold waters formed on Antarctic continental shelves descend along the Antarctic continental margin, where they mix with other Southern Ocean waters to form Antarctic Bottom Water (AABW). AABW then spreads into the deepest parts of all major ocean basins, isolating heat and carbon from the atmosphere for centuries. Despite AABW’s key role in regulating Earth’s climate on long time scales and in recording Southern Ocean conditions, AABW remains poorly observed. This lack of observational data is mostly due to two factors. First, AABW originates on the Antarctic continental shelf and slope wherein situmeasurements are limited and ocean observations by satellites are hampered by persistent sea ice cover and long periods of darkness in winter. Second, north of the Antarctic continental slope, AABW is found below approximately 2 km depth, wherein situobservations are also scarce and satellites cannot provide direct measurements. Here, we review progress made during the past decades in observing AABW. We describe 1) long-term monitoring obtained by moorings, by ship-based surveys, and beneath ice shelves through bore holes; 2) the recent development of autonomous observing tools in coastal Antarctic and deep ocean systems; and 3) alternative approaches including data assimilation models and satellite-derived proxies. The variety of approaches is beginning to transform our understanding of AABW, including its formation processes, temporal variability, and contribution to the lower limb of the global ocean meridional overturning circulation. In particular, these observations highlight the key role played by winds, sea ice, and the Antarctic Ice Sheet in AABW-related processes. We conclude by discussing future avenues for observing and understanding AABW, impressing the need for a sustained and coordinated observing system. 
    more » « less