Making the most of biodiversity data requires linking observations of biological species from multiple sources both efficiently and accurately (Bisby 2000, Franz et al. 2016). Aggregating occurrence records using taxonomic names and synonyms is computationally efficient but known to experience significant limitations on accuracy when the assumption of one-to-one relationships between names and biological entities breaks down (Remsen 2016, Franz and Sterner 2018). Taxonomic treatments and checklists provide authoritative information about the correct usage of names for species, including operational representations of the meanings of those names in the form of range maps, reference genetic sequences, or diagnostic traits. They increasingly provide taxonomic intelligence in the form of precise description of the semantic relationships between different published names in the literature. Making this authoritative information Findable, Accessible, Interoperable, and Reusable (FAIR; Wilkinson et al. 2016) would be a transformative advance for biodiversity data sharing and help drive adoption and novel extensions of existing standards such as the Taxonomic Concept Schema and the OpenBiodiv Ontology (Kennedy et al. 2006, Senderov et al. 2018). We call for the greater, global Biodiversity Information Standards (TDWG) and taxonomy community to commit to extending and expanding on how FAIR applies to biodiversity data and includemore »
Avenues into Integration: Communicating taxonomic intelligence from sender to recipient
“What is crucial for your ability to communicate with me… pivots on the recipient’s capacity to interpret—to make good inferential sense of the meanings that the declarer is able to send” (Rescher 2000, p148). Conventional approaches to reconciling taxonomic information in biodiversity databases have been based on string matching for unique taxonomic name combinations (Kindt 2020, Norman et al. 2020). However, in their original context, these names pertain to specific usages or taxonomic concepts, which can subsequently vary for the same name as applied by different authors. Name-based synonym matching is a helpful first step (Guala 2016, Correia et al. 2018), but may still leave considerable ambiguity regarding proper usage (Fig. 1). Therefore, developing "taxonomic intelligence" is the bioinformatic challenge to adequately represent, and subsequently propagate, this complex name/usage interaction across trusted biodiversity data networks. How do we ensure that senders and recipients of biodiversity data not only can share messages but do so with “good inferential sense” of their respective meanings? Key obstacles have involved dealing with the complexity of taxonomic name/usage modifications through time, both in terms of accounting for and digitally representing the long histories of taxonomic change in most lineages. An important critique of proposals to more »
- Award ID(s):
- 1754731
- Publication Date:
- NSF-PAR ID:
- 10204125
- Journal Name:
- Biodiversity Information Science and Standards
- Volume:
- 4
- ISSN:
- 2535-0897
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
The taxonomic foundation of a new regional flora or monograph is the reconciliation of pre-existing names and taxonomic concepts (i.e., variation in usage of those names). This reconciliation is traditionally done manually, but the availability of taxonomic resources online and of text manipulation software means that some of the work can now be automated, speeding up the development of new taxonomic products. As a contribution to developing a new Flora of Alaska (floraofalaska.org), we have digitized the main pre-existing flora (Hultén 1968) and combined it with key online taxonomic name sources (Panarctic Flora, Flora of North America, International Plant Names Index - IPNI, Tropicos, Kew’s World Checklist of Selected Plant Families), to build a canonical list of names anchored to external Globally Unique Identifiers (GUIDs) (e.g., IPNI URLs). We developed taxonomically-aware fuzzy-matching software ( matchnames , Webb 2020) to identify cognates in different lists. The taxa for which there are variations between different sources in accepted names and synonyms are then flagged for review by taxonomic experts. However, even though names may be consistent across previous monographs and floras, the taxonomic concept (or circumscription) of a name may differ among authors, meaning that the way an accepted name in themore »
-
We provide an overview and update on initiatives and approaches to add taxonomic data intelligence to distributed biodiversity knowledge networks. "Taxonomic intelligence" for biodiversity data is defined here as the ability to identify and renconcile source-contextualized taxonomic name-to-meaning relationships (Remsen 2016). We review the scientific opportunities, as well as information-technological and socio-economic pathways - both existing and envisioned - to embed de-centralized taxonomic data intelligence into the biodiversity data publication and knowledge intedgration processes. We predict that the success of this project will ultimately rest on our ability to up-value the roles and recognition of systematic expertise and experts in large, aggregated data environments. We will argue that these environments will need to adhere to criteria for responsible data science and interests of coherent communities of practice (Wenger 2000, Stoyanovich et al. 2017). This means allowing for fair, accountable, and transparent representation and propagation of evolving systematic knowledge and enduring or newly apparent conflict in systematic perspective (Sterner and Franz 2017, Franz and Sterner 2018, Sterner et al. 2019). We will demonstrate in principle and through concrete use cases, how to de-centralize systematic knowledge while maintaining alignments between congruent or concflicting taxonomic concept labels (Franz et al. 2016a, Franz etmore »
-
Translating information between the domains of systematics and conservation requires novel information management designs. Such designs should improve interactions across the trading zone between the domains, herein understood as the model according to which knowledge and uncertainty are productively translated in both directions (cf. Collins et al. 2019). Two commonly held attitudes stand in the way of designing a well-functioning systematics-to-conservation trading zone. On one side, there are calls to unify the knowledge signal produced by systematics, underpinned by the argument that such unification is a necessary precondition for conservation policy to be reliably expressed and enacted (e.g., Garnett et al. 2020). As a matter of legal scholarship, the argument for systematic unity by legislative necessity is principally false (Weiss 2003, MacNeil 2009, Chromá 2011), but perhaps effective enough as a strategy to win over audiences unsure about robust law-making practices in light of variable and uncertain knowledge. On the other side, there is an attitude that conservation cannot ever restrict the academic freedom of systematics as a scientific discipline (e.g., Raposo et al. 2017). This otherwise sound argument misses the mark in the context of designing a productive trading zone with conservation. The central interactional challenge is not whethermore »
-
All life on earth is linked by a shared evolutionary history. Even before Darwin developed the theory of evolution, Linnaeus categorized types of organisms based on their shared traits. We now know these traits derived from these species’ shared ancestry. This evolutionary history provides a natural framework to harness the enormous quantities of biological data being generated today. The Open Tree of Life project is a collaboration developing tools to curate and share evolutionary estimates (phylogenies) covering the entire tree of life (Hinchliff et al. 2015, McTavish et al. 2017). The tree is viewable at https://tree.opentreeoflife.org, and the data is all freely available online. The taxon identifiers used in the Open Tree unified taxonomy (Rees and Cranston 2017) are mapped to identifiers across biological informatics databases, including the Global Biodiversity Information Facility (GBIF), NCBI, and others. Linking these identifiers allows researchers to easily unify data from across these different resources (Fig. 1). Leveraging a unified evolutionary framework across the diversity of life provides new avenues for integrative wide scale research. Downstream tools, such as R packages developed by the R OpenSci foundation (rotl, rgbif) (Michonneau et al. 2016, Chamberlain 2017) and others tools (Revell 2012), make accessing and combining thismore »