skip to main content

Title: Joint reconstruction of initial pressure distribution and spatial distribution of acoustic properties of elastic media with application to transcranial photoacoustic tomography

Photoacoustic computed tomography (PACT) is an emerging computed imaging modality that exploits optical contrast and ultrasonic detection principles to form images of the photoacoustically induced initial pressure distribution within tissue. The PACT reconstruction problem corresponds to a time-domain inverse source problem, where the initial pressure distribution is recovered from the measurements recorded on an aperture outside the support of the source. A major challenge in transcranial PACT brain imaging is to compensate for aberrations in the measured acoustic data that are induced by propagation of the photoacoustic wavefields through the skull. To properly account for these effects, previously proposed image reconstruction methods for transcranial PACT require knowledge of the spatial distribution of the elastic parameters of the skull. However, estimating the spatial distribution of these parameters prior to the PACT experiment remains challenging. To circumvent this issue, in this work a method to jointly reconstruct the initial pressure distribution and a low-dimensional representation of the elastic parameters of the skull is developed and investigated. The joint reconstruction (JR) problem is solved by use of a proximal optimization method that allows constraints and non-smooth regularization terms. The proposed method is evaluated by use of large-scale three-dimensional (3D) computer-simulation studies that mimic transcranial PACT experiments.

more » « less
Author(s) / Creator(s):
Publisher / Repository:
IOP Publishing
Date Published:
Journal Name:
Inverse Problems
Page Range / eLocation ID:
Article No. 124007
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    Photoacoustic computed tomography (PACT), also known as optoacoustic tomography, is an emerging imaging technique that holds great promise for biomedical imaging. PACT is a hybrid imaging method that can exploit the strong endogenous contrast of optical methods along with the high spatial resolution of ultrasound methods. In its canonical form that is addressed in this article, PACT seeks to estimate the photoacoustically-induced initial pressure distribution within the object. Image reconstruction methods are employed to solve the acoustic inverse problem associated with the image formation process. When an idealized imaging scenario is considered, analytic solutions to the PACT inverse problem are available; however, in practice, numerous challenges exist that are more readily addressed within an optimization-based, or iterative, image reconstruction framework. In this article, the PACT image reconstruction problem is reviewed within the context of modern optimization-based image reconstruction methodologies. Imaging models that relate the measured photoacoustic wavefields to the sought-after object function are described in their continuous and discrete forms. The basic principles of optimization-based image reconstruction from discrete PACT measurement data are presented, which includes a review of methods for modeling the PACT measurement system response and other important physical factors. Non-conventional formulations of the PACT image reconstruction problem, in which acoustic parameters of the medium are concurrently estimated along with the PACT image, are also introduced and reviewed.

    more » « less
  2. This work is centered on high-fidelity modeling, analysis, and rigorous experiments of vibrations and guided (Lamb) waves in a human skull in two connected tracks: (1) layered modeling of the cranial bone structure (with cortical tables and diploë) and its vibration-based elastic parameter identification (and validation); (2) transcranial leaky Lamb wave characterization experiments and radiation analyses using the identified elastic parameters in a layered semi analytical finite element framework, followed by time transient simulations that consider the inner porosity as is. In the first track, non-contact vibration experiments are conducted to extract the first handful of modal frequencies in the auditory frequency regime, along with the associated damping ratios and mode shapes, of dry cranial bone segments extracted from the parietal and frontal regions of a human skull. Numerical models of the bone segments are built with a novel image reconstruction scheme that employs microcomputed tomographic scans to build a layered bone geometry with separate homogenized domains for the cortical tables and the diploë. These numerical models and the experimental modal frequencies are then used in an iterative parameter identification scheme that yields the cortical and diploic isotropic elastic moduli of each domain, whereas the corresponding densities are estimated using the total experimental mass and layer mass ratios obtained from the scans. With the identified elastic parameters, the average error between experimental and numerical modal frequencies is less than 1.5% and the modal assurance criterion values for most modes are above 0.90. Furthermore, the extracted parameters are in the range of the results reported in the literature. In the second track, the focus is placed on the subject of leaky Lamb waves, which has received growing attention as a promising alternative to conventional ultrasound techniques for transcranial transmission, especially to access the brain periphery. Experiments are conducted on the same cranial bone segment set for leaky Lamb wave excitation and radiation characterization. The degassed skull bone segments are used in submersed experiments with an ultrasonic transducer and needle hydrophone setup for radiation pressure field scanning. Elastic parameters obtained from the first track are used in guided wave dispersion simulations, and the radiation angles are accurately predicted using the aforementioned layered model in the presence of fluid loading. The dominant radiation angles are shown to correspond to guided wave modes with low attenuation and a significant out-of-plane polarization. The experimental radiation spectra are finally compared against those obtained from time transient finite element simulations that leverage geometric models reconstructed from microcomputed tomographic scans. 
    more » « less
  3. This Letter reports a new, to the best of our knowledge, high-frequency surface-micromachined optical ultrasound transducer (HF-SMOUT) array for micro photoacoustic computed tomography (µPACT). An 11 × 11 mm22D array of 220 × 220 elements (35 µm in diameter) is designed, fabricated, and characterized. The optical resonance wavelength (ORW) of ≥90% of the elements falls within a 6-nm range. The acoustic center frequency and bandwidth of the elements are ∼14 MHz and ∼18 MHz (129%), respectively. The noise equivalent pressure (NEP) is 161 Pa (or 18 mPa/Hz) within a measurement bandwidth of 5–75 MHz. The standard deviation of the ORW drift is 0.45 nm and 0.93 nm within 25°C−55°C, respectively, and during a seven-day continuous water immersion. PACT experiments are conducted to evaluate the imaging performances of the HF-SMOUT array. The spatial resolution is estimated as 90 µm (axial) and 250–750 µm (lateral) within a 10 × 10 mm2field of view (FoV) and the imaging depth of 16 mm. A 3D PA image of a knotted black hair target is also successfully acquired. These results demonstrate the feasibility of using the HF-SMOUT array for µPACT applications.

    more » « less
  4. Coded spectral X-ray computed tomography (CT) based on K-edge filtered illumination is a cost-effective approach to acquire both 3-dimensional structure of objects and their material composition. This approach allows sets of incomplete rays from sparse views or sparse rays with both spatial and spectral encoding to effectively reduce the inspection duration or radiation dose, which is of significance in biological imaging and medical diagnostics. However, reconstruction of spectral CT images from compressed measurements is a nonlinear and ill-posed problem. This paper proposes a material-decomposition-based approach to directly solve the reconstruction problem, without estimating the energy-binned sinograms. This approach assumes that the linear attenuation coefficient map of objects can be decomposed into a few basis materials that are separable in the spectral and space domains. The nonlinear problem is then converted to the reconstruction of the mass density maps of the basis materials. The dimensionality of the optimization variables is thus effectively reduced to overcome the ill-posedness. An alternating minimization scheme is used to solve the reconstruction with regularizations of weighted nuclear norm and total variation. Compared to the state-of-the-art reconstruction method for coded spectral CT, the proposed method can significantly improve the reconstruction quality. It is also capable of reconstructing the spectral CT images at two additional energy bins from the same set of measurements, thus providing more spectral information of the object.

    more » « less
  5. Abstract Raman spectroscopy is widely used to identify mineral and fluid inclusions in host crystals, as well as to calculate pressure-temperature (P-T) conditions with mineral inclusion elastic thermobarometry, for example quartz-in-garnet barometry (QuiG) and zircon-in-garnet thermometry (ZiG). For thermobarometric applications, P-T precision and accuracy depend crucially on the reproducibility of Raman peak position measurements. In this study, we monitored long-term instrument stability and varied analytical parameters to quantify peak position reproducibility for Raman spectra from quartz and zircon inclusions and reference crystals. Our ultimate goal was to determine the reproducibility of calculated inclusion pressures (“Pinc”) and entrapment pressures (“Ptrap”) or temperatures (“Ttrap”) by quantifying diverse analytical errors, as well as to identify optimal measurement conditions and provide a baseline for interlaboratory comparisons. Most tests emphasized 442 nm (blue) and 532 nm (green) laser sources, although repeated analysis of a quartz inclusion in garnet additionally used a 632.8 nm (red) laser. Power density was varied from <1 to >100 mW and acquisition time from 3 to 270s. A correction is proposed to suppress interference on the ~206 cm–1 peak in quartz spectra by a broad nearby (~220 cm–1) peak in garnet spectra. Rapid peak drift up to 1 cm–1/h occurred after powering the laser source, followed by minimal drift (<0.2 cm–1/h) for several hours thereafter. However, abrupt shifts in peak positions as large as 2–3 cm–1 sometimes occurred within periods of minutes, commonly either positively or negatively correlated to changes in room temperature. An external Hg-emission line (fluorescent light) can be observed in spectra collected with the green laser and shows highly correlated but attenuated directional shifts compared to quartz and zircon peaks. Varying power density and acquisition time did not affect Raman peak positions of either quartz or zircon grains, possibly because power densities at the levels of inclusions were low. However, some zircon inclusions were damaged at higher power levels of the blue laser source, likely because of laser-induced heating. Using a combination of 1, 2, or 3 peak positions for the ~128, ~206, and ~464 cm–1 peaks in quartz to calculate Pinc and Ptrap showed that use of the blue laser source results in the most reproducible Ptrap values for all methods (0.59 to 0.68 GPa at an assumed temperature of 450 °C), with precisions for a single method as small as ±0.03 GPa (2σ). Using the green and red lasers, some methods of calculating Ptrap produce nearly identical estimates as the blue laser with similarly good precision (±0.02 GPa for green laser, ±0.03 GPa for red laser). However, using 1- and 2-peak methods to calculate Ptrap can yield values that range from 0.52 ± 0.06 to 0.93 ± 0.16 GPa for the green laser, and 0.53 ± 0.08 GPa to 1.00 ± 0.45 GPa for the red laser. Semiquantitative calculations for zircon, assuming a typical error of ±0.25 cm–1 in the position of the ~1008 cm–1 peak, imply reproducibility in temperature (at an assumed pressure) of approximately ±65 °C. For optimal applications to elastic thermobarometry, analysts should: (1) delay data collection approximately one hour after laser startup, or leave lasers on; (2) collect a Hg-emission line simultaneously with Raman spectra when using a green laser to correct for externally induced shifts in peak positions; (3) correct for garnet interference on the quartz 206 cm–1 peak; and either (4a) use a short wavelength (blue) laser for quartz and zircon crystals for P-T calculations, but use very low-laser power (<12 mW) to avoid overheating and damage or (4b) use either the intermediate wavelength (green; quartz and zircon) or long wavelength (red; zircon) laser for P-T calculations, but restrict calculations to specific methods. Implementation of our recommendations should optimize reproducibility for elastic geothermobarometry, especially QuiG barometry and ZiG thermometry. 
    more » « less