skip to main content


Title: Mitigating Network Latency in Cloud-Based Teleoperation using Motion Segmentation and Synthesis
Network latency is a major problem in Cloud Robotics for human robot interactions such as teleoperation. Routing delays can be highly variable in a heterogeneous computing environment, imposing challenges to reliably teleoperate a robot with a closed-loop feedback controller. By sharing Gaussian Mixture Models (GMMs), Hidden Semi- Markov Models (HSMMs), and linear quadratic tracking (LQT) con- trollers between the cloud and the robot. We build a motion recognition, segmentation, and synthesis framework for Cloud Robotic teleoperation; and we introduce a set of latency mitigation network protocols under this framework. We use this framework in experiments with a dynamic robot arm to perform learned hand-written letter motions.We then study the motion recognition errors, motion synthesis errors, and the latency mitigation performance.  more » « less
Award ID(s):
1838833
NSF-PAR ID:
10204349
Author(s) / Creator(s):
; ; ;
Date Published:
Journal Name:
International Symposium on Robotics Research
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Tele-nursing robots provide a safe approach for patient-caring in quarantine areas. For effective nurse-robot collaboration, ergonomic teleoperation and intuitive interfaces with low physical and cognitive workload must be developed. We propose a framework to evaluate the control interfaces to iteratively develop an intuitive, efficient, and ergonomic teleoperation interface. The framework is a hierarchical procedure that incorporates general to specific assessment and its role in design evolution. We first present pre-defined objective and subjective metrics used to evaluate three representative contemporary teleoperation interfaces. The results indicate that teleoperation via human motion mapping outperforms the gamepad and stylus interfaces. The trade-off with using motion mapping as a teleoperation interface is the non-trivial physical fatigue. To understand the impact of heavy physical demand during motion mapping teleoperation, we propose an objective assessment of physical workload in teleoperation using electromyography (EMG). We find that physical fatigue happens in the actions that involve precise manipulation and steady posture maintenance. We further implemented teleoperation assistance in the form of shared autonomy to eliminate the fatigue-causing component in robot teleoperation via motion mapping. The experimental results show that the autonomous feature effectively reduces the physical effort while improving the efficiency and accuracy of the teleoperation interface. 
    more » « less
  2. The growing demand of industrial, automotive and service robots presents a challenge to the centralized Cloud Robotics model in terms of privacy, security, latency, bandwidth, and reliability. In this paper, we present a ‘Fog Robotics’ approach to deep robot learning that distributes compute, storage and networking resources between the Cloud and the Edge in a federated manner. Deep models are trained on non-private (public) synthetic images in the Cloud; the models are adapted to the private real images of the environment at the Edge within a trusted network and subsequently, deployed as a service for low-latency and secure inference/prediction for other robots in the network. We apply this approach to surface decluttering, where a mobile robot picks and sorts objects from a cluttered floor by learning a deep object recognition and a grasp planning model. Experiments suggest that Fog Robotics can improve performance by sim-to-real domain adaptation in comparison to exclusively using Cloud or Edge resources, while reducing the inference cycle time by 4 to successfully declutter 86% of objects over 213 attempts. 
    more » « less
  3. Teleoperation—i.e., controlling a robot with human motion—proves promising in enabling a humanoid robot to move as dynamically as a human. But how to map human motion to a humanoid robot matters because a human and a humanoid robot rarely have identical topologies and dimensions. This work presents an experimental study that utilizes reaction tests to compare joint space and task space mappings for dynamic teleoperation of an anthropomorphic robotic arm that possesses human-level dynamic motion capabilities. The experimental results suggest that the robot achieved similar and, in some cases, human-level dynamic performances with both mappings for the six participating human subjects. All subjects became proficient at teleoperating the robot with both mappings after practice, despite that the subjects and the robot differed in size and link length ratio and that the teleoperation required the subjects to move unintuitively. Yet, most subjects developed their teleoperation proficiencies more quickly with task space mapping than with joint space mapping after similar amounts of practice. This study also indicates the potential values of three-dimensional task space mapping, a teleoperation training simulator, and force feedback to the human pilot for intuitive and dynamic teleoperation of a humanoid robot’s arms. 
    more » « less
  4. null (Ed.)
    Teleoperation—i.e., controlling a robot with human motion—proves promising in enabling a humanoid robot to move as dynamically as a human. But how to map human motion to a humanoid robot matters because a human and a humanoid robot rarely have identical topologies and dimensions. This work presents an experimental study that utilizes reaction tests to compare joint space and task space mappings for dynamic teleoperation of an anthropomorphic robotic arm that possesses human-level dynamic motion capabilities. The experimental results suggest that the robot achieved similar and, in some cases, human-level dynamic performances with both mappings for the six participating human subjects. All subjects became proficient at teleoperating the robot with both mappings after practice, despite that the subjects and the robot differed in size and link length ratio and that the teleoperation required the subjects to move unintuitively. Yet, most subjects developed their teleoperation proficiencies more quickly with task space mapping than with joint space mapping after similar amounts of practice. This study also indicates the potential values of three-dimensional task space mapping, a teleoperation training simulator, and force feedback to the human pilot for intuitive and dynamic teleoperation of a humanoid robot’s arms. 
    more » « less
  5. As many robot automation applications increasingly rely on multi-core processing or deep-learning models, cloud computing is becoming an attractive and economically viable resource for systems that do not contain high computing power onboard. Despite its immense computing capacity, it is often underused by the robotics and automation community due to lack of expertise in cloud computing and cloud-based infrastructure. Fog Robotics balances computing and data between cloud edge devices. We propose a software framework, FogROS, as an extension of the Robot Operating System (ROS), the de-facto standard for creating robot automation applications and components. It allows researchers to deploy components of their software to the cloud with minimal effort, and correspondingly gain access to additional computing cores, GPUs, FPGAs, and TPUs, as well as predeployed software made available by other researchers. FogROS allows a researcher to specify which components of their software will be deployed to the cloud and to what type of computing hardware. We evaluate FogROS on 3 examples: (1) simultaneous localization and mapping (ORB-SLAM2), (2) Dexterity Network (Dex-Net) GPU-based grasp planning, and (3) multi-core motion planning using a 96-core cloud-based server. In all three examples, a component is deployed to the cloud and accelerated with a small change in system launch configuration, while incurring additional latency of 1.2 s, 0.6 s, and 0.5 s due to network communication, the computation speed is improved by 2.6x, 6.0x and 34.2x, respectively. 
    more » « less