skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Statistical prediction of the future impairs episodic encoding of the present
Memory is typically thought of as enabling reminiscence about past experiences. However, memory also informs and guides processing of future experiences. These two functions of memory are often at odds: Remembering specific experiences from the past requires storing idiosyncratic properties that define particular moments in space and time, but by definition such properties will not be shared with similar situations in the future and thus may not be applicable to future situations. We discovered that, when faced with this conflict, the brain prioritizes prediction over encoding. Behavioral tests of recognition and source recall showed that items allowing for prediction of what will appear next based on learned regularities were less likely to be encoded into memory. Brain imaging revealed that the hippocampus was responsible for this interference between statistical learning and episodic memory. The more that the hippocampus predicted the category of an upcoming item, the worse the current item was encoded. This competition may serve an adaptive purpose, focusing encoding on experiences for which we do not yet have a predictive model.  more » « less
Award ID(s):
1839308
PAR ID:
10204473
Author(s) / Creator(s):
;
Date Published:
Journal Name:
Proceedings of the National Academy of Sciences
Volume:
117
Issue:
37
ISSN:
0027-8424
Page Range / eLocation ID:
22760 to 22770
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract Event boundaries help structure the content of episodic memories by segmenting continuous experiences into discrete events. Event boundaries may also serve to preserve meaningful information within an event, thereby actively separating important memories from interfering representations imposed by past and future events. Here, we tested the hypothesis that event boundaries organize emotional memory based on changing dynamics as events unfold. We developed a novel threat-reversal learning task whereby participants encoded trial-unique exemplars from two semantic categories across three phases: preconditioning, fear acquisition, and reversal. Shock contingencies were established for one category during acquisition (CS+) and then switched to the other during reversal (CS−). Importantly, reversal either was separated by a perceptible event boundary (Experiment 1) or occurred immediately after acquisition, with no perceptible context shift (Experiment 2). In a surprise recognition memory test the next day, memory performance tracked the learning contingencies from encoding in Experiment 1, such that participants selectively recognized more threat-associated CS+ exemplars from before (retroactive) and during acquisition, but this pattern reversed toward CS− exemplars encoded during reversal. By contrast, participants with continuous encoding—without a boundary between conditioning and reversal—exhibited undifferentiated memory for exemplars from both categories encoded before acquisition and after reversal. Further analyses highlight nuanced effects of event boundaries on reversing conditioned fear, updating mnemonic generalization, and emotional biasing of temporal source memory. These findings suggest that event boundaries provide anchor points to organize memory for distinctly meaningful information, thereby adaptively structuring memory based on the content of our experiences. 
    more » « less
  2. null; Mangun, G.R.; Gazzaniga, M.S. (Ed.)
    The human ability to remember unique experiences from many years ago comes so naturally that we often take it for granted. It depends on three stages: (1) encoding, when new information is initially registered, (2) storage, when encoded information is held in the brain, and (3) retrieval, when stored information is used. Historically, cognitive neuroscience studies of memory have emphasized encoding and retrieval. Yet, the intervening stage may hold the most intrigue, and has become a major research focus in the years since the last edition of this book. Here we describe recent investigations of post-acquisition memory processing in relation to enduring storage. This evidence of memory processing belies the notion that memories stored in the brain are held in stasis, without changing. Various methods for influencing and monitoring brain activity have been applied to study offline memory processing. In particular, memories can be reactivated during sleep and during resting periods, with distinctive physiological correlates. These neural signals shed light on the contribution of hippocampal-neocortical interactions to memory consolidation. Overall, results converge on the notion that memory reactivation is a critical determinant of systems-level consolidation, and thus of future remembering, which in turn facilitates future planning and problem solving. 
    more » « less
  3. At any given moment, humans are bombarded with a constant stream of new information. But the brain can take in only a fraction of that information at once. So how does the brain decide what to pay attention to and what to ignore? Many laboratory studies of attention avoid this issue by simply telling participants what to attend to. But in daily life, people rarely receive instructions like that. Instead people must often rely on past experiences to guide their attention. When cycling close to home, for example, a person knows to watch out for the blind junction at the top of the hill and for the large pothole just around the corner. Günseli and Aly set out to bridge the gap between laboratory studies of attention and real-world experience by asking healthy volunteers to perform two versions of a task while lying inside a brain scanner. The task involved looking at pictures of rooms with different shapes. Each room also contained a different painting. In one version of the task, the volunteers were told to pay attention to either the paintings or to the room shapes. In the other version, the volunteers had to use previously memorized cues to work out for themselves whether they should focus on the paintings or on the shapes. The brain scans showed that two areas of the brain with roles in memory – the hippocampus and the prefrontal cortex – were involved in the task. Notably, both areas increased their activity when the volunteers used memory to guide their attention, compared to when they received instructions telling them what to focus on. Moreover, patterns of activity within the hippocampus and prefrontal cortex contained information about what the participants were about to focus on next – even before volunteers saw the particular picture that they were supposed to pay attention to. In the hippocampus, this was particularly the case when the volunteers based their decisions on memory. These results reveal a key way in which humans leverage memories of past experiences to help optimize future behavior. Understanding this process could shed light on why memory impairments make it harder for people to adjust their behavior to achieve specific goals. 
    more » « less
  4. Memories are an important part of how we think, understand the world around us, and plan out future actions. In the brain, memories are thought to be stored in a region called the hippocampus. When memories are formed, neurons store events that occur around the same time together. This might explain why often, in the brains of animals, the activity associated with retrieving memories is not just a snapshot of what happened at a specific moment-- it can also include information about what the animal might experience next. This can have a clear utility if animals use memories to predict what they might experience next and plan out future actions. Mathematically, this notion of predictiveness can be summarized by an algorithm known as the successor representation. This algorithm describes what the activity of neurons in the hippocampus looks like when retrieving memories and making predictions based on them. However, even though the successor representation can computationally reproduce the activity seen in the hippocampus when it is making predictions, it is unclear what biological mechanisms underpin this computation in the brain. Fang et al. approached this problem by trying to build a model that could generate the same activity patterns computed by the successor representation using only biological mechanisms known to exist in the hippocampus. First, they used computational methods to design a network of neurons that had the biological properties of neural networks in the hippocampus. They then used the network to simulate neural activity. The results show that the activity of the network they designed was able to exactly match the successor representation. Additionally, the data resulting from the simulated activity in the network fitted experimental observations of hippocampal activity in Tufted Titmice. One advantage of the network designed by Fang et al. is that it can generate predictions in flexible ways,. That is, it canmake both short and long-term predictions from what an individual is experiencing at the moment. This flexibility means that the network can be used to simulate how the hippocampus learns in a variety of cognitive tasks. Additionally, the network is robust to different conditions. Given that the brain has to be able to store memories in many different situations, this is a promising indication that this network may be a reasonable model of how the brain learns. The results of Fang et al. lay the groundwork for connecting biological mechanisms in the hippocampus at the cellular level to cognitive effects, an essential step to understanding the hippocampus, as well as its role in health and disease. For instance, their network may provide a concrete approach to studying how disruptions to the ways neurons make and break connections can impair memory formation. More generally, better models of the biological mechanisms involved in making computations in the hippocampus can help scientists better understand and test out theories about how memories are formed and stored in the brain. 
    more » « less
  5. Episodic memories are records of personally experienced events, coded neurally via the hippocampus and sur- rounding medial temporal lobe cortex. Information about the neural signal corresponding to a memory representation can be measured in fMRI data when the pattern across voxels is examined. Prior studies have found that similarity in the voxel patterns across repetition of a to-be-remembered stimulus predicts later memory retrieval, but the results are inconsistent across studies. The current study investigates the possibility that cognitive goals (defined here via the task instructions given to participants) during encoding affect the voxel pattern that will later support memory retrieval, and therefore that neural representations cannot be interpreted based on the stimulus alone. The behavioral results showed that exposure to variable cognitive tasks across repetition of events benefited subsequent memory retrieval. Voxel patterns in the hippocampus indicated a significant interaction between cognitive tasks (variable vs. consistent) and memory (remembered vs. forgotten) such that reduced voxel pattern similarity for repeated events with variable cognitive tasks, but not consistent cognitive tasks, sup- ported later memory success. There was no significant interaction in neural pattern similarity between cognitive tasks and memory success in medial temporal cortices or lateral occipital cortex. Instead, higher similarity in voxel patterns in right medial temporal cortices was associated with later memory retrieval, regardless of cognitive task. In conclusion, we found that the relationship between pattern similarity across repeated encoding and memory success in the hippocampus (but not medial temporal lobe cortex) changes when the cognitive task during encoding does or does not vary across repetitions of the event. 
    more » « less