skip to main content


Title: Seasonal variation in the canopy color of temperate evergreen conifer forests
Summary

Evergreen conifer forests are the most prevalent land cover type in North America. Seasonal changes in the color of evergreen forest canopies have been documented with near‐surface remote sensing, but the physiological mechanisms underlying these changes, and the implications for photosynthetic uptake, have not been fully elucidated.

Here, we integrate on‐the‐ground phenological observations, leaf‐level physiological measurements, near surface hyperspectral remote sensing and digital camera imagery, tower‐based CO2flux measurements, and a predictive model to simulate seasonal canopy color dynamics.

We show that seasonal changes in canopy color occur independently of new leaf production, but track changes in chlorophyll fluorescence, the photochemical reflectance index, and leaf pigmentation. We demonstrate that at winter‐dormant sites, seasonal changes in canopy color can be used to predict the onset of canopy‐level photosynthesis in spring, and its cessation in autumn. Finally, we parameterize a simple temperature‐based model to predict the seasonal cycle of canopy greenness, and we show that the model successfully simulates interannual variation in the timing of changes in canopy color.

These results provide mechanistic insight into the factors driving seasonal changes in evergreen canopy color and provide opportunities to monitor and model seasonal variation in photosynthetic activity using color‐based vegetation indices.

 
more » « less
Award ID(s):
1926090 1832210 1702697 1926023 1925992
NSF-PAR ID:
10374958
Author(s) / Creator(s):
 ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  
Publisher / Repository:
Wiley-Blackwell
Date Published:
Journal Name:
New Phytologist
Volume:
229
Issue:
5
ISSN:
0028-646X
Page Range / eLocation ID:
p. 2586-2600
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Summary

    Understanding the pronounced seasonal and spatial variation in leaf carboxylation capacity (Vc,max) is critical for determining terrestrial carbon cycling in tropical forests. However, an efficient and scalable approach for predictingVc,maxis still lacking.

    Here the ability of leaf spectroscopy for rapid estimation ofVc,maxwas tested.Vc,maxwas estimated using traditional gas exchange methods, and measured reflectance spectra and leaf age in leaves sampled from tropical forests in Panama and Brazil. These data were used to build a model to predictVc,maxfrom leaf spectra.

    The results demonstrated that leaf spectroscopy accurately predictsVc,maxof mature leaves in Panamanian tropical forests (R2 = 0.90). However, this single‐age model required recalibration when applied to broader leaf demographic classes (i.e. immature leaves). Combined use of spectroscopy models forVc,maxand leaf age enabled construction of theVc,max–age relationship solely from leaf spectra, which agreed with field observations. This suggests that the spectroscopy technique can capture the seasonal variability inVc,max, assuming sufficient sampling across diverse species, leaf ages and canopy environments.

    This finding will aid development of remote sensing approaches that can be used to characterizeVc,maxin moist tropical forests and enable an efficient means to parameterize and evaluate terrestrial biosphere models.

     
    more » « less
  2. Solar-Induced Chlorophyll Fluorescence (SIF) can provide key information about the state of photosynthesis and offers the prospect of defining remote sensing-based estimation of Gross Primary Production (GPP). There is strong theoretical support for the link between SIF and GPP and this relationship has been empirically demonstrated using ground-based, airborne, and satellite-based SIF observations, as well as modeling. However, most evaluations have been based on monthly and annual scales, yet the GPP:SIF relations can be strongly influenced by both vegetation structure and physiology. At the monthly timescales, the structural response often dominates but short-term physiological variations can strongly impact the GPP:SIF relations. Here, we test how well SIF can predict the inter-daily variation of GPP during the growing season and under stress conditions, while taking into account the local effect of sites and abiotic conditions. We compare the accuracy of GPP predictions from SIF at different timescales (half-hourly, daily, and weekly), while evaluating effect of adding environmental variables to the relationship. We utilize observations for years 2018–2019 at 31 mid-latitudes, forested, eddy covariance (EC) flux sites in North America and Europe and use TROPOMI satellite data for SIF. Our results show that SIF is a good predictor of GPP, when accounting for inter-site variation, probably due to differences in canopy structure. Seasonally averaged leaf area index, fraction of absorbed photosynthetically active radiation (fPAR) and canopy conductance provide a predictor to the site-level effect. We show that fPAR is the main factor driving errors in the linear model at high temporal resolution. Adding water stress indicators, namely canopy conductance, to a multi-linear SIF-based GPP model provides the best improvement in the model precision at the three considered timescales, showing the importance of accounting for water stress in GPP predictions, independent of the SIF signal. SIF is a promising predictor for GPP among other remote sensing variables, but more focus should be placed on including canopy structure, and water stress effects in the relationship, especially when considering intra-seasonal, and inter- and intra-daily resolutions. 
    more » « less
  3. Summary

    Leaf mass per area (LMA) is a key plant trait, reflecting tradeoffs between leaf photosynthetic function, longevity, and structural investment. Capturing spatial and temporal variability in LMA has been a long‐standing goal of ecological research and is an essential component for advancing Earth system models. Despite the substantial variation in LMA within and across Earth's biomes, an efficient, globally generalizable approach to predict LMA is still lacking.

    We explored the capacity to predict LMA from leaf spectra across much of the global LMA trait space, with values ranging from 17 to 393 g m−2. Our dataset contained leaves from a wide range of biomes from the high Arctic to the tropics, included broad‐ and needleleaf species, and upper‐ and lower‐canopy (i.e. sun and shade) growth environments.

    Here we demonstrate the capacity to rapidly estimate LMA using only spectral measurements across a wide range of species, leaf age and canopy position from diverse biomes. Our model captures LMA variability with high accuracy and low error (R2 = 0.89; root mean square error (RMSE) = 15.45 g m−2).

    Our finding highlights the fact that the leaf economics spectrum is mirrored by the leaf optical spectrum, paving the way for this technology to predict the diversity of LMA in ecosystems across global biomes.

     
    more » « less
  4. Abstract

    Recent advances in satellite observations of solar‐induced chlorophyll fluorescence (SIF) provide a new opportunity to constrain the simulation of terrestrial gross primary productivity (GPP). Accurate representation of the processes driving SIF emission and its radiative transfer to remote sensing sensors is an essential prerequisite for data assimilation. Recently, SIF simulations have been incorporated into several land surface models, but the scaling of SIF from leaf‐level to canopy‐level is usually not well‐represented. Here, we incorporate the simulation of far‐red SIF observed at nadir into the Community Land Model version 5 (CLM5). Leaf‐level fluorescence yield was simulated by a parametric simplification of the Soil Canopy‐Observation of Photosynthesis and Energy fluxes model (SCOPE). And an efficient and accurate method based on escape probability is developed to scale SIF from leaf‐level to top‐of‐canopy while taking clumping and the radiative transfer processes into account. SIF simulated by CLM5 and SCOPE agreed well at sites except one in needleleaf forest (R2 > 0.91, root‐mean‐square error <0.19 W⋅m−2⋅sr−1⋅μm−1), and captured the day‐to‐day variation of tower‐measured SIF at temperate forest sites (R2 > 0.68). At the global scale, simulated SIF generally captured the spatial and seasonal patterns of satellite‐observed SIF. Factors including the fluorescence emission model, clumping, bidirectional effect, and leaf optical properties had considerable impacts on SIF simulation, and the discrepancies between simulate d and observed SIF varied with plant functional type. By improving the representation of radiative transfer for SIF simulation, our model allows better comparisons between simulated and observed SIF toward constraining GPP simulations.

     
    more » « less
  5. Abstract

    Accurate estimation of terrestrial gross primary productivity (GPP) remains a challenge despite its importance in the global carbon cycle. Chlorophyll fluorescence (ChlF) has been recently adopted to understand photosynthesis and its response to the environment, particularly with remote sensing data. However, it remains unclear how ChlF and photosynthesis are linked at different spatial scales across the growing season. We examined seasonal relationships between ChlF and photosynthesis at the leaf, canopy, and ecosystem scales and explored how leaf‐level ChlF was linked with canopy‐scale solar‐induced chlorophyll fluorescence (SIF) in a temperate deciduous forest at Harvard Forest, Massachusetts,USA. Our results show that ChlF captured the seasonal variations of photosynthesis with significant linear relationships between ChlF and photosynthesis across the growing season over different spatial scales (R= 0.73, 0.77, and 0.86 at leaf, canopy, and satellite scales, respectively;P < 0.0001). We developed a model to estimateGPPfrom the tower‐based measurement ofSIFand leaf‐level ChlF parameters. The estimation ofGPPfrom this model agreed well with flux tower observations ofGPP(R= 0.68;P < 0.0001), demonstrating the potential ofSIFfor modelingGPP. At the leaf scale, we found that leafFq/Fm, the fraction of absorbed photons that are used for photochemistry for a light‐adapted measurement from a pulse amplitude modulation fluorometer, was the best leaf fluorescence parameter to correlate with canopySIFyield (SIF/APAR,R= 0.79;P < 0.0001). We also found that canopySIFandSIF‐derivedGPP(GPPSIF) were strongly correlated to leaf‐level biochemistry and canopy structure, including chlorophyll content (R= 0.65 for canopyGPPSIFand chlorophyll content;P < 0.0001), leaf area index (LAI) (R= 0.35 for canopyGPPSIFandLAI;P < 0.0001), and normalized difference vegetation index (NDVI) (R= 0.36 for canopyGPPSIFandNDVI;P < 0.0001). Our results suggest that ChlF can be a powerful tool to track photosynthetic rates at leaf, canopy, and ecosystem scales.

     
    more » « less