Classification of construction resource states, using sensor data analytics, has implications for improving informed decision-making for safety and productivity. However, training on sensor data analytics in construction education faces challenges owing to the complexity of analytical processes and the large stream of raw data involved. This research presents the development and user evaluation of ActionSens, a block-based end-user programming platform, for training students from construction-related disciplines to classify resources using sensor data analytics. ActionSens was designed for construction students to perform sensor data analytics such as activity recognition in construction. ActionSens was compared to traditional tools (i.e., combining Excel and MATLAB) used for performing sensor data analytics in terms of usability, workload, visual attention, and processing time using the System Usability Scale, NASA Task Load Index, eye-tracking, and qualitative feedback. Twenty students participated, performing data analytics tasks with both approaches. ActionSens exhibited a better user experience compared to conventional platforms, through higher usability scores and lower cognitive workload. This was evident through participants' interaction behavior, showcasing optimized attentional resource allocation across key tasks. The study contributes to knowledge by illustrating how the integration of construction domain information into block-based programming environments can equip students with the necessary skills for sensor data analytics. The development of ActionSens contributes to the Learning-for-Use framework by employing graphical and interactive programming objects to foster procedural knowledge for addressing challenges in sensor data analytics. The formative evaluation provides insights into how students engage with the programming environment and assesses the impact of the environment on their cognitive load.
more »
« less
CAVA: A Visual Analytics System for Exploratory Columnar Data Augmentation Using Knowledge Graphs
Most visual analytics systems assume that all foraging for data happens before the analytics process; once analysis begins, the set of data attributes considered is fixed. Such separation of data construction from analysis precludes iteration that can enable foraging informed by the needs that arise in-situ during the analysis. The separation of the foraging loop from the data analysis tasks can limit the pace and scope of analysis. In this paper, we present CAVA, a system that integrates data curation and data augmentation with the traditional data exploration and analysis tasks, enabling information foraging in-situ during analysis. Identifying attributes to add to the dataset is difficult because it requires human knowledge to determine which available attributes will be helpful for the ensuing analytical tasks. CAVA crawls knowledge graphs to provide users with a a broad set of attributes drawn from external data to choose from. Users can then specify complex operations on knowledge graphs to construct additional attributes. CAVA shows how visual analytics can help users forage for attributes by letting users visually explore the set of available data, and by serving as an interface for query construction. It also provides visualizations of the knowledge graph itself to help users understand complex joins such as multi-hop aggregations. We assess the ability of our system to enable users to perform complex data combinations without programming in a user study over two datasets. We then demonstrate the generalizability of CAVA through two additional usage scenarios. The results of the evaluation confirm that CAVA is effective in helping the user perform data foraging that leads to improved analysis outcomes, and offer evidence in support of integrating data augmentation as a part of the visual analytics pipeline.
more »
« less
- PAR ID:
- 10204549
- Date Published:
- Journal Name:
- IEEE Transactions on Visualization and Computer Graphics
- Volume:
- 27
- Issue:
- 1
- ISSN:
- 1077-2626
- Page Range / eLocation ID:
- 1 to 1
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
null (Ed.)Visual analytics systems enable highly interactive exploratory data analysis. Across a range of fields, these technologies have been successfully employed to help users learn from complex data. However, these same exploratory visualization techniques make it easy for users to discover spurious findings. This paper proposes new methods to monitor a user’s analytic focus during visual analysis of structured datasets and use it to surface relevant articles that contextualize the visualized findings. Motivated by interactive analyses of electronic health data, this paper introduces a formal model of analytic focus, a computational approach to dynamically update the focus model at the time of user interaction, and a prototype application that leverages this model to surface relevant medical publications to users during visual analysis of a large corpus of medical records. Evaluation results with 24 users show that the modeling approach has high levels of accuracy and is able to surface highly relevant medical abstracts.more » « less
-
Data analytics and computational thinking are essential for processing and analyzing data from sensors, and presenting the results in formats suitable for decision-making. However, most undergraduate construction engineering and management students struggle with understanding the required computational concepts and workflows because they lack the theoretical foundations. This has resulted in a shortage of skilled workforce equipped with the required competencies for developing sustainable solutions with sensor data. End-user programming environments present students with a means to execute complex analysis by employing visual programming mechanics. With end-user programming, students can easily formulate problems, logically organize, analyze sensor data, represent data through abstractions, and adapt the results to a wide variety of problems. This paper presents a conceptual system based on end-user programming and grounded in the Learning-for-Use theory which can equip construction engineering and management students with the competencies needed to implement sensor data analytics in the construction industry. The system allows students to specify algorithms by directly interacting with data and objects to analyze sensor data and generate information to support decision-making in construction projects. An envisioned scenario is presented to demonstrate the potential of the system in advancing students’ data analytics and computational thinking skills. The study contributes to existing knowledge in the application of computational thinking and data analytics paradigms in construction engineering education.more » « less
-
Abstract The rise of Large Language Models (LLMs) and generative visual analytics systems has transformed data‐driven insights, yet significant challenges persist in accurately interpreting users analytical and interaction intents. While language inputs offer flexibility, they often lack precision, making the expression of complex intents inefficient, error‐prone, and time‐intensive. To address these limitations, we investigate the design space of multimodal interactions for generative visual analytics through a literature review and pilot brainstorming sessions. Building on these insights, we introduce a highly extensible workflow that integrates multiple LLM agents for intent inference and visualization generation. We develop InterChat, a generative visual analytics system that combines direct manipulation of visual elements with natural language inputs. This integration enables precise intent communication and supports progressive, visually driven exploratory data analyses. By employing effective prompt engineering, and contextual interaction linking, alongside intuitive visualization and interaction designs, InterChat bridges the gap between user interactions and LLM‐driven visualizations, enhancing both interpretability and usability. Extensive evaluations, including two usage scenarios, a user study, and expert feedback, demonstrate the effectiveness of InterChat. Results show significant improvements in the accuracy and efficiency of handling complex visual analytics tasks, highlighting the potential of multimodal interactions to redefine user engagement and analytical depth in generative visual analytics.more » « less
-
Exploratory data analysis of high-dimensional datasets is a crucial task for which visual analytics can be especially useful. However, the ad hoc nature of exploratory analysis can also lead users to draw incorrect causal inferences. Previous studies have demonstrated this risk and shown that integrating counterfactual concepts within visual analytics systems can improve users’ understanding of visualized data. However, effectively leveraging counterfactual concepts can be challenging, with only bespoke implementations found in prior work. Moreover, it can require expertise in both counterfactual subset analysis and visualization to implement the functionalities practically. This paper aims to help address these challenges in two ways. First, we propose an operator-based conceptual model for the use of counterfactuals that is informed by prior work in visualization research. Second, we contribute the Co-op library, an open and extensible reference implementation of this model that can support the integration of counterfactual-based subset computation with visualization systems. To evaluate the effectiveness and generalizability of Co-op, the library was used to construct two different visual analytics systems each supporting a distinct user workflow. In addition, expert interviews were conducted with professional visual analytics researchers and engineers to gain more insights regarding how Co-op could be leveraged. Finally, informed in part by these evaluation results, we distil a set of key design implications for effectively leveraging counterfactuals in future visualization systems.more » « less
An official website of the United States government

