skip to main content


Title: A High-Pressure System for Studying Oxygen Reduction During Pt Nanoparticle Collisions

Here we report measurements of the oxygen reduction reaction (ORR) at single Pt nanoparticles (NPs) through their collision with a Au microdisk electrode of lower electrocatalytic activity. Performing measurements at an elevated pressure (10-atm, pure O2) raises the O2concentration ∼50-fold over air-saturated measurements, allowing the ORR activity of smaller Pt NPs to be resolved and quantified, compared to measurements taken at atmospheric pressure. Single-NP ORR current vs potential measurements for 2.6, 16, and 24 nm radius citrate-capped Pt NPs, show the catalytic activity of the smallest Pt NPs to be roughly one order of magnitude greater than the activity of the larger NPs. The particle-by-particle nature of our measurement quantifies the distribution of electrocatalytic activities of individual particles, which we determine to be larger than can be explained by the distribution of particle sizes. Additionally, we report that some of the observed ORR current transients contain multiple sharp peaks per single-NP measurement, indicating multiple collisions of a single Pt NP at the electrode surface.

 
more » « less
NSF-PAR ID:
10204845
Author(s) / Creator(s):
; ; ; ; ;
Publisher / Repository:
The Electrochemical Society
Date Published:
Journal Name:
Journal of The Electrochemical Society
Volume:
167
Issue:
16
ISSN:
0013-4651
Page Range / eLocation ID:
Article No. 166507
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    Engineering the crystal structure of Pt–M (M = transition metal) nanoalloys to chemically ordered ones has drawn increasing attention in oxygen reduction reaction (ORR) electrocatalysis due to their high resistance against M etching in acid. Although Pt–Ni alloy nanoparticles (NPs) have demonstrated respectable initial ORR activity in acid, their stability remains a big challenge due to the fast etching of Ni. In this work, sub‐6 nm monodisperse chemically orderedL10‐Pt–Ni–Co NPs are synthesized for the first time by employing a bifunctional core/shell Pt/NiCoOxprecursor, which could provide abundant O‐vacancies for facilitated Pt/Ni/Co atom diffusion and prevent NP sintering during thermal annealing. Further, Co doping is found to remarkably enhance the ferromagnetism (room temperature coercivity reaching 2.1 kOe) and the consequent chemical ordering ofL10‐Pt–Ni NPs. As a result, the best‐performing carbon supportedL10‐PtNi0.8Co0.2catalyst reveals a half‐wave potential (E1/2) of 0.951 V versus reversible hydrogen electrode in 0.1mHClO4with 23‐times enhancement in mass activity over the commercial Pt/C catalyst along with much improved stability. Density functional theory (DFT) calculations suggest that theL10‐PtNi0.8Co0.2core could tune the surface strain of the Pt shell toward optimized Pt–O binding energy and facilitated reaction rate, thereby improving the ORR electrocatalysis.

     
    more » « less
  2. null (Ed.)
    Highly efficient air electrodes are a key component of reversible fuel cells for energy storage and conversion; however, the development of efficient electrodes that are stable against water vapor remains a grand challenge. Here we report an air–electrode, composed of double perovskite material PrBa 0.8 Ca 0.2 Co 2 O 5+δ (PBCC) backbone coated with nanoparticles (NPs) of BaCoO 3−δ (BCO), that exhibits remarkable electrocatalytic activity for oxygen reduction reaction (ORR) while maintaining excellent tolerance to water vapor. When tested in a symmetrical cell exposed to wet air with 3 vol% H 2 O at 750 °C, the electrode shows an area specific resistance of ∼0.03 Ω cm 2 in an extended period of time. The performance enhancement is attributed mainly to the electrocatalytic activity of the BCO NPs dispersed on the surface of the porous PBCC electrode. Moreover, in situ Raman spectroscopy is used to probe reaction intermediates ( e.g. , oxygen species) on electrode surfaces, as the electrochemical properties of the electrodes are characterized under the same conditions. The direct correlation between surface chemistry and electrochemical behavior of an electrode is vital to gaining insight into the mechanisms of the electrocatalytic processes in fuel cells and electrolysers. 
    more » « less
  3. Abstract

    The enhanced safety, superior energy, and power density of rechargeable metal‐air batteries make them ideal energy storage systems for application in energy grids and electric vehicles. However, the absence of a cost‐effective and stable bifunctional catalyst that can replace expensive platinum (Pt)‐based catalyst to promote oxygen reduction reaction (ORR) and oxygen evolution reaction (OER) at the air cathode hinders their broader adaptation. Here, it is demonstrated that Tin (Sn) doped β‐gallium oxide (β‐Ga2O3) in the bulk form can efficiently catalyze ORR and OER and, hence, be applied as the cathode in Zn‐air batteries. The Sn‐doped β‐Ga2O3sample with 15% Sn (Snx=0.15‐Ga2O3) displayed exceptional catalytic activity for a bulk, non‐noble metal‐based catalyst. When used as a cathode, the excellent electrocatalytic bifunctional activity of Snx=0.15‐Ga2O3leads to a prototype Zn‐air battery with a high‐power density of 138 mW cm−2and improved cycling stability compared to devices with benchmark Pt‐based cathode. The combined experimental and theoretical exploration revealed that the Lewis acid sites in β‐Ga2O3aid in regulating the electron density distribution on the Sn‐doped sites, optimize the adsorption energies of reaction intermediates, and facilitate the formation of critical reaction intermediate (O*), leading to enhanced electrocatalytic activity.

     
    more » « less
  4. In this report, density functional theory (DFT) calculations of O and OH binding energies on triatomic surface ensembles of Pd x Ir (100−x) nanoalloys successfully predicted the overall trend in experimental oxygen reduction reaction (ORR) activity as a function of nanoparticle (NP) composition. Specifically, triatomic Pd 3 ensembles were found to possess optimal O and OH binding energies and were predicted to be highly active sites for the ORR, rivaling that of Pt(111). However, DFT calculations suggest that the O binding energy increases at active sites containing Ir, thereby decreasing ORR activity. Pd x Ir (100−x) nanoalloys were synthesized using a microwave-assisted method and their activity towards the ORR was tested using rotating disk voltammetry (RDV). As predicted, the bimetallic electrocatalysts exhibited worse catalytic activity than the Pd-only NPs. The strong qualitative correlation between the theoretical and experimental results demonstrates that the activity of individual active sites on the surface of NPs can serve as a proxy for overall activity. This is a particularly useful strategy for applying DFT calculations to electrocatalysts that are too large for true first-principle analysis. 
    more » « less
  5. Abstract

    The local microenvironment at the electrode‐electrolyte interface plays an important role in electrocatalytic performance. Herein, we investigate the effect of acid electrolyte anion identity on the oxygen reduction reaction (ORR) activity and selectivity of smooth Ag and Pd catalyst thin films. Cyclic voltammetry in perchloric, nitric, sulfuric, phosphoric, hydrochloric, and hydrobromic acid, at pH 1, reveals that Ag ORR activity trends as follows: HClO4>HNO3>H2SO4>H3PO4>HCl≫HBr, while Pd ORR activity trends as: HClO4>H2SO4>HNO3>H3PO4>HCl≫HBr. Moreover, rotating‐ring‐disk‐electrode selectivity measurements demonstrate enhanced 4eselectivity on both Ag and Pd, by up to 35 %H2O2and 10 %H2O2respectively, in HNO3compared to in HClO4. Relating physics‐based modeling and experimental results, we postulate that ORR performance depends greatly on anion‐related phenomena in the double layer, for instance competitive adsorption and non‐covalent interactions.

     
    more » « less