skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.

Attention:

The NSF Public Access Repository (PAR) system and access will be unavailable from 11:00 PM ET on Friday, July 11 until 2:00 AM ET on Saturday, July 12 due to maintenance. We apologize for the inconvenience.


Title: Circulation Control for Faster Minimum Cost Flow in Unit-Capacity Graphs
We present an m^{4/3+o(1)} log W -time algorithm for solving the minimum cost flow problem in graphs with unit capacity, where W is the maximum absolute value of any edge weight. For sparse graphs, this improves over the best known running time for this problem and, by well-known reductions, also implies improved running times for the shortest path problem with negative weights, minimum cost bipartite b-matching when |b|_1 = O(m), and recovers the running time of the currently fastest algorithm for maximum flow in graphs with unit capacities (Liu-Sidford, 2020). Our algorithm relies on developing an interior point method–based framework which acts on the space of circulations in the underlying graph. From the combinatorial point of view, this framework can be viewed as iteratively improving the cost of a suboptimal solution by pushing flow around circulations. These circulations are derived by computing a regularized version of the standard Newton step, which is partially inspired by previous work on the unit-capacity maximum flow problem (Liu-Sidford, 2019), and subsequently refined based on the very recent progress on this problem (Liu-Sidford, 2020). The resulting step problem can then be computed efficiently using the recent work on l_p-norm minimizing flows (Kyng-Peng-Sachdeva-Wang, 2019). We obtain our faster algorithm by combining this new step primitive with a customized preconditioning method, which aims to ensure that the graph on which these circulations are computed has sufficiently large conductance.  more » « less
Award ID(s):
1718342
PAR ID:
10204854
Author(s) / Creator(s):
; ;
Date Published:
Journal Name:
IEEE Symposium on Foundations of Computer Science
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. null (Ed.)
    We present an $$m^{4/3}+o(1) \log W$$ -time algorithm for solving the minimum cost flow problem in graphs with unit capacity, where W is the maximum absolute value of any edge weight. For sparse graphs, this improves over the best known running time for this problem and, by well-known reductions, also implies improved running times for the shortest path problem with negative weights, minimum cost bipartite $$b$$-matching when $$\|b\|_1 = O(m)$$, and recovers the running time of the currently fastest algorithm for maximum flow in graphs with unit capacities (Liu-Sidford, 2020). Our algorithm relies on developing an interior point method–based framework which acts on the space of circulations in the underlying graph. From the combinatorial point of view, this framework can be viewed as iteratively improving the cost of a suboptimal solution by pushing flow around circulations. These circulations are derived by computing a regularized version of the standard Newton step, which is partially inspired by previous work on the unit-capacity maximum flow problem (Liu-Sidford, 2019), and subsequently refined based on the very re- cent progress on this problem (Liu-Sidford, 2020). The resulting step problem can then be computed efficiently using the recent work on $$l_p$$-norm minimizing flows (Kyng-Peng-Sachdeva- Wang, 2019). We obtain our faster algorithm by combining this new step primitive with a customized preconditioning method, which aims to ensure that the graph on which these circulations are computed has sufficiently large conductance. 
    more » « less
  2. We give an algorithm that computes exact maximum flows and minimum-cost flows on directed graphs with m edges and polynomially bounded integral demands, costs, and capacities in m^{1+o(1)} time. Our algorithm builds the flow through a sequence of m^{1+o(1)} approximate undirected minimum-ratio cycles, each of which is computed and processed in amortized m^{o(1)} time using a new dynamic graph data structure. Our framework extends to algorithms running in m^{1+o(1)} time for computing flows that minimize general edge-separable convex functions to high accuracy. This gives almost-linear time algorithms for several problems including entropy-regularized optimal transport, matrix scaling, p-norm flows, and p-norm isotonic regression on arbitrary directed acyclic graphs. 
    more » « less
  3. null (Ed.)
    We present an $$\tilde O(m+n^{1.5})$$-time randomized algorithm for maximum cardinality bipartite matching and related problems (e.g. transshipment, negative-weight shortest paths, and optimal transport) on $$m$$-edge, $$n$$-node graphs. For maximum cardinality bipartite matching on moderately dense graphs, i.e. $$m = \Omega(n^{1.5})$$, our algorithm runs in time nearly linear in the input size and constitutes the first improvement over the classic $$O(m\sqrt{n})$$-time [Dinic 1970; Hopcroft-Karp 1971; Karzanov 1973] and $$\tilde O(n^\omega)$$-time algorithms [Ibarra-Moran 1981] (where currently $$\omega\approx 2.373$$). On sparser graphs, i.e. when $$m = n^{9/8 + \delta}$$ for any constant $$\delta>0$$, our result improves upon the recent advances of [Madry 2013] and [Liu-Sidford 2020b, 2020a] which achieve an $$\tilde O(m^{4/3+o(1)})$$ runtime. We obtain these results by combining and advancing recent lines of research in interior point methods (IPMs) and dynamic graph algorithms. First, we simplify and improve the IPM of [v.d.Brand-Lee-Sidford-Song 2020], providing a general primal-dual IPM framework and new sampling-based techniques for handling infeasibility induced by approximate linear system solvers. Second, we provide a simple sublinear-time algorithm for detecting and sampling high-energy edges in electric flows on expanders and show that when combined with recent advances in dynamic expander decompositions, this yields efficient data structures for maintaining the iterates of both [v.d.Brand~et~al.] and our new IPMs. Combining this general machinery yields a simpler $$\tilde O(n \sqrt{m})$$ time algorithm for matching based on the logarithmic barrier function, and our state-of-the-art $$\tilde O(m+n^{1.5})$$ time algorithm for matching based on the [Lee-Sidford 2014] barrier (as regularized in [v.d.Brand~et~al.]). 
    more » « less
  4. The maximum bipartite matching problem is among the most fundamental and well-studied problems in combinatorial optimization. A beautiful and celebrated combinatorial algorithm of Hopcroft and Karp [26] shows that maximum bipartite matching can be solved in O(m√n) time on a graph with n vertices and m edges. For the case of very dense graphs, a different approach based on fast matrix multiplication was subsequently developed [27, 39], that achieves a running time of O(n2.371). For the next several decades, these results represented the fastest known algorithms for the problem until in 2013, a ground-breaking work of Madry [36] gave a significantly faster algorithm for sparse graphs. Subsequently, a sequence of works developed increasingly faster algorithms for solving maximum bipartite matching, and more generally directed maximum flow, culminating in a spectacular recent breakthrough [9] that gives an m1+o(1) time algorithm for maximum bipartite matching (and more generally, for min cost flows). These more recent developments collectively represented a departure from earlier combinatorial approaches: they all utilized continuous techniques based on interior-point methods for solving linear programs. This raises a natural question: are continuous techniques essential to obtaining fast algorithms for the bipartite matching problem? Our work makes progress on this question by presenting a new, purely combinatorial algorithm for bipartite matching, that, on moderately dense graphs outperforms both Hopcroft- Karp and the fast matrix multiplication based algorithms. Similar to the classical algorithms for bipartite matching, our approach is based on iteratively augmenting a current matching using augmenting paths in the (directed) residual flow network. A common method for designing fast algorithms for directed flow problems is via the multiplicative weights update (MWU) framework, that effectively reduces the flow problem to decremental single-source shortest paths (SSSP) in directed graphs. Our main observation is that a slight modification of this reduction results in a special case of SSSP that appears significantly easier than general decremental directed SSSP. Our main technical contribution is an efficient algorithm for this special case of SSSP, that outperforms the current state of the art algorithms for general decremental SSSP with adaptive adversary, leading to a deterministic algorithm for bipartite matching, whose running time is Õ(m1/3n5/3). This new algorithm thus starts to outperform the Hopcroft-Karp algorithm in graphs with m = ω(n7/4), and it also outperforms the fast matrix multiplication based algorithms on dense graphs. We believe that this framework for obtaining faster combinatorial algorithms for bipartite matching by exploiting the special properties of the resulting decremental SSSP instances is one of the main conceptual contributions of our work that we hope paves the way for even faster combinatorial algorithms for bipartite matching. Finally, using a standard reduction from the maximum vertex-capacitated s-t flow problem in directed graphs to maximum bipartite matching, we also obtain an O(m1/3n5/3) time deterministic algorithm for maximum vertex-capacitated s-t flow when all vertex capacities are identical. 
    more » « less
  5. Minimum flow decomposition (MFD) is the NP-hard problem of finding a smallest decomposition of a network flow/circulationXon a directed graphGinto weighted source-to-sink paths whose weighted sum equalsX. We show that, for acyclic graphs, considering thewidthof the graph (the minimum number of paths needed to cover all of its edges) yields advances in our understanding of its approximability. For the version of the problem that uses only non-negative weights, we identify and characterise a new class ofwidth-stablegraphs, for which a popular heuristic is aO(logVal(X))-approximation (Val(X) being the total flow ofX), and strengthen its worst-case approximation ratio from\(\Omega (\sqrt {m})\)to Ω (m/logm) for sparse graphs, wheremis the number of edges in the graph. We also study a new problem on graphs with cycles, Minimum Cost Circulation Decomposition (MCCD), and show that it generalises MFD through a simple reduction. For the version allowing also negative weights, we give a (⌈ log ‖ X ‖ ⌉ +1)-approximation (‖X‖ being the maximum absolute value ofXon any edge) using a power-of-two approach, combined with parity fixing arguments and a decomposition of unitary circulations (‖X‖ ≤ 1), using a generalised notion of width for this problem. Finally, we disprove a conjecture about the linear independence of minimum (non-negative) flow decompositions posed by Kloster et al. [2018], but show that its useful implication (polynomial-time assignments of weights to a given set of paths to decompose a flow) holds for the negative version. 
    more » « less