skip to main content


Title: Accurate, Fast, But Not Always Cheap: Evaluating “Crowdcoding” as an Alternative Approach to Analyze Social Media Data
Crowdcoding, a method that outsources “coding” tasks to numerous people on the internet, has emerged as a popular approach for annotating texts and visuals. However, the performance of this approach for analyzing social media data in the context of journalism and mass communication research has not been systematically assessed. This study evaluated the validity and efficiency of crowdcoding based on the analysis of 4,000 tweets about the 2016 U.S. presidential election. The results show that compared with the traditional quantitative content analysis, crowdcoding yielded comparably valid results and was superior in efficiency, but was more expensive under most circumstances.  more » « less
Award ID(s):
1838193
NSF-PAR ID:
10204906
Author(s) / Creator(s):
; ; ; ; ;
Date Published:
Journal Name:
Journalism & Mass Communication Quarterly
Volume:
97
Issue:
3
ISSN:
1077-6990
Page Range / eLocation ID:
811 to 834
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. This paper demonstrates a high-efficiency modular multilevel resonant DC-DC converter (MMRC) with zero-voltage switching (ZVS) capability. In order to minimize the conduction loss in the converter, optimizing the root-mean-square (RMS) current flowing through switching devices is considered an effective approach. The analysis of circuit configuration and operating principle show that the RMS value of the current flowing through switching devices is closely related to the factors such as the resonant tank parameters, switching frequency, converter output voltage and current, etc. A quantitative analysis that considers all these factors has been performed to evaluate the RMS current of all the components in the circuit. When the circuit parameters are carefully designed, the switch current waveform can be close to the square waveform, which has a low RMS value and results in low conduction loss. And a design example based on the theoretical analysis is presented to show the design procedures of the presented converter. A 600 W 48 V-to-12 V prototype is built with the parameters obtained from the design example section. Simulation and experiments have been performed to verify the high-efficiency feature of the designed converter. The measured converter peak efficiency reaches 99.55% when it operates at 200 kHz. And its power density can be as high as 795 W/in 3 . 
    more » « less
  2. Adaptive mesh refinement (AMR) has been introduced as an attractive means of significantly improving computational efficiency for a variety of two-phase flow problems. In the current study, the benefits of AMR are investigated for the case of liquid jet atomization. The evaluation consists of a systematic analysis of results from the interDymFoam (AMR octree) and interFoam (static octree) codes, both of which form part of the family of solvers distributed within the open source OpenFOAM C++ Toolbox. The two-phase flow treatment is based on an algebraic VoF methodology. As a preliminary set of exercises, cases for pure advection, stationary wave dynamics, and Rayleigh-Plateau breakup of a cylindrical liquid element are considered. The results from these exercises confirm the expected trend of higher numerical efficiency in AMR, while still retaining essentially the same level of accuracy as the fixed embedded mesh solutions. However, for the liquid jet atomization, the behavior is a bit more complicated. First, at lower levels of Weber number, we observe a similar trend as the preliminary exercises. At higher Weber numbers, due to a noticeable increase in interfacial area density, substantial inhomogeneities are formed in the underlying grids yielding slower solutions of pressure Poisson equation, thereby potentially offsetting the benefits of this approach. In fact, at much higher Weber numbers, for instance, those pertaining to Diesel injection, the results suggest that a fixed embedded mesh would provide better computational efficiency. However, this conclusion depends on the target lowest level of numerical resolution, Δxmin. The current work shows how the efficiency of AMR suffers from increasing interfacial area density, and how this can be alleviated via a decrease in Δxmin. Various test cases are presented to illustrate this effect. 
    more » « less
  3. Abstract

    Fluorescenceresonanceenergytransfer (FRET) is a powerful tool to study macromolecular interactions such as protein–protein interactions (PPIs). Fluorescent protein (FP) fusions enable FRET‐based PPI analysis of signaling pathways and molecular structure in living cells. Despite FRET's importance in PPI studies, FRET has seen limited use in quantifying the affinities of PPIs in living cells. Here, we have explored the relationship between FRET efficiency and PPI affinity over a wide range when expressed from a single plasmid system inEscherichia coli.Using live‐cell microscopy and a set of 20 pairs of small interacting proteins, belonging to different structural folds and interaction affinities, we demonstrate that FRET efficiency can reliably measure the dissociation constant (KD) over a range of mMto nM. A 10‐fold increase in the interaction affinity results in 0.05 unit increase in FRET efficiency, providing sufficient resolution to quantify large affinity differences (> 10‐fold) using live‐cell FRET. This approach provides a rapid and simple strategy for assessment of PPI affinities over a wide range and will have utility for high‐throughput analysis of protein interactions.

     
    more » « less
  4.  
    more » « less
  5. Abstract Detecting continuous nanohertz gravitational waves (GWs) generated by individual close binaries of supermassive black holes (CB-SMBHs) is one of the primary objectives of pulsar timing arrays (PTAs). The detection sensitivity is slated to increase significantly as the number of well-timed millisecond pulsars will increase by more than an order of magnitude with the advent of next-generation radio telescopes. Currently, the Bayesian analysis pipeline using parallel tempering Markov Chain Monte Carlo has been applied in multiple studies for CB-SMBH searches, but it may be challenged by the high dimensionality of the parameter space for future large-scale PTAs. One solution is to reduce the dimensionality by maximizing or marginalizing over uninformative parameters semianalytically, but it is not clear whether this approach can be extended to more complex signal models without making overly simplified assumptions. Recently, the method of diffusive nested (DNest) sampling has shown capability in coping with high dimensionality and multimodality effectively in Bayesian analysis. In this paper, we apply DNest to search for continuous GWs in simulated pulsar timing residuals and find that it performs well in terms of accuracy, robustness, and efficiency for a PTA including  ( 10 2 ) pulsars. DNest also allows a simultaneous search of multiple sources elegantly, which demonstrates its scalability and general applicability. Our results show that it is convenient and also highly beneficial to include DNest in current toolboxes of PTA analysis. 
    more » « less