Understanding carrier recombination processes in metal halide perovskites is fundamentally important to further improving the efficiency of perovskite solar cells, yet the accurate recombination velocity at grain boundaries (GBs) has not been determined. Here, we report the determination of carrier recombination velocities at GBs (SGB) of polycrystalline perovskites by mapping the transient photoluminescence pattern change induced by the nonradiative recombination of carriers at GBs. Charge recombination at GBs is revealed to be even stronger than at surfaces of unpassivated films, with averageSGBreaching 2200 to 3300 cm/s. Regular surface treatments do not passivate GBs because of the absence of contact at GBs. We find a surface treatment using tributyl(methyl)phosphonium dimethyl phosphate that can penetrate into GBs by partially dissolving GBs and converting it into one-dimensional perovskites. It reduces the averageSGBby four times, with the lowestSGBof 410 cm/s, which is comparable to surface recombination velocities after passivation.
more »
« less
Uncovering topographically hidden features in 2D MoSe2 with correlated potential and optical nanoprobes
Abstract Developing characterization strategies to better understand nanoscale features in two-dimensional nanomaterials is of crucial importance, as the properties of these materials are many times driven by nanoscale and microscale chemical and structural modifications within the material. For the case of large area monolayer MoSe2flakes, kelvin probe force microscopy coupled with tip-enhanced photoluminescence was utilized to evaluate such features including internal grain boundaries, edge effects, bilayer contributions, and effects of oxidation/aging, many of which are invisible to topographical mapping. A reduction in surface potential due ton-type behavior was observed at the edge of the flakes as well as near grain boundaries. Potential phase mapping, which corresponds to the local dielectric constant, depicted local biexciton and trion states in optically-active regions of interest such as grain boundaries. Finally, nanoscale surface potential and photoluminescence mapping was performed at several stages of oxidation, revealing that various oxidative states can be evaluated during the aging process. Importantly, all of the characterization performed in this study was non-destructive and rapid, crucial for quality evaluation of an exciting class of two-dimensional nanomaterials.
more »
« less
- Award ID(s):
- 1905853
- PAR ID:
- 10205070
- Publisher / Repository:
- Nature Publishing Group
- Date Published:
- Journal Name:
- npj 2D Materials and Applications
- Volume:
- 4
- Issue:
- 1
- ISSN:
- 2397-7132
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Surface functionalization of low-dimensional nanomaterials offers a means to tailor their optoelectronic and chemical characteristics. However, functionalization reactions are sensitive to the inherent surface features of nanomaterials, such as defects, grain boundaries, and edges. Conventional optical characterization methods, such as Raman spectroscopy, have limited sensitivity and spatial resolution and, therefore, struggle to visualize reaction sites and chemical species. Here, we demonstrate the capability of spatially and chemically sensitive tip-enhanced Raman spectroscopy imaging to map the distribution of molecules in covalently functionalized graphene. Hyperspectral vertex component analysis and density functional theory are necessary to interpret the nature of binding sites and extract information from the spatially and spectrally heterogeneous datasets. Our results clarify the origin of heterogeneous surface functionalization, resolving preferential binding at edges and defects. This work demonstrates the potential of nanospectroscopic tools combined with unsupervised learning to characterize complex, partially ordered optoelectronic nanomaterials.more » « less
-
Abstract Leading photovoltaic technologies such as multicrystalline Si, CdTe, Cu(In,Ga)Se2, and lead halide perovskites are polycrystalline, yet achieve relatively high performance. At the moment polycrystalline photovoltaic technologies stand at a juncture where further advances in device performance and reliability necessitate additional characterization and modeling to include nanoscale property variations. Properties and implications of grain boundaries are previously studied, yet chemistry variations along individual grain boundaries and its implications are not yet fully explored. Here, the effects of bromine etching of CdTe absorber layers on the nanoscale chemistry are reported. Bromine etching is commonly used for improving CdTe back contacts, yet it removes both cadmium and chlorine along grain boundaries to depths closer to 1 µm. 2D device simulations reveal these composition modifications limit photovoltaic performance. Since grain boundaries and their intersections with surfaces and interfaces are universal to thin film photovoltaics, these findings call for similar studies in each of the photovoltaic technologies to further enable advances.more » « less
-
Abstract Oxide solid electrolytes (OSEs) have the potential to achieve improved safety and energy density for lithium-ion batteries, but their high grain-boundary (GB) resistance generally is a bottleneck. In the well-studied perovskite oxide solid electrolyte, Li3xLa2/3-xTiO3(LLTO), the ionic conductivity of grain boundaries is about three orders of magnitude lower than that of the bulk. In contrast, the related Li0.375Sr0.4375Ta0.75Zr0.25O3(LSTZ0.75) perovskite exhibits low grain boundary resistance for reasons yet unknown. Here, we use aberration-corrected scanning transmission electron microscopy and spectroscopy, along with an active learning moment tensor potential, to reveal the atomic scale structure and composition of LSTZ0.75 grain boundaries. Vibrational electron energy loss spectroscopy is applied for the first time to reveal atomically resolved vibrations at grain boundaries of LSTZ0.75 and to characterize the otherwise unmeasurable Li distribution therein. We find that Li depletion, which is a major reason for the low grain boundary ionic conductivity of LLTO, is absent for the grain boundaries of LSTZ0.75. Instead, the low grain boundary resistivity of LSTZ0.75 is attributed to the formation of a nanoscale defective cubic perovskite interfacial structure that contained abundant vacancies. Our study provides new insights into the atomic scale mechanisms of low grain boundary resistivity.more » « less
-
Thermoelectric responses in two-dimensional electron gases subjected to magnetic fields have the potential to provide unique information about quasiparticle statistics. In this study, we show that chiral edge states play a key role in thermoelectric Hall bar measurements by completely controlling the direction of the internal thermal gradient. To this end, we perform measurements of the magnetothermoelectric responses of cadmium arsenide quantum wells. The magnetothermoelectric responses in the quantum Hall regime agree with theoretical predictions if one considers the role of chiral edge states, which flow in opposite directions on either side of the Hall bar and establish an internal temperature gradient that is perpendicular to the externally applied thermal gradient. We show that the results are self-consistent within this picture under different measurement conditions. We discuss potential applications of the findings, such as in nanoscale control of local temperature gradients and thermoelectric effects along with the characterization of other topological systems with chiral edges states.more » « less
An official website of the United States government
