skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Assessing Social License to Operate from the Public Discourse on Social Media
Organisations are monitoring their Social License to Operate (SLO) with increasing regularity. SLO, the level of support organisations gain from the public, is typically assessed through surveys or focus groups, which require expensive manual efforts and yield quickly-outdated results. In this paper, we present SIRTA (Social Insight via Real-Time Text Analytics), a novel real-time text analytics system for assessing and monitoring organisations’ SLO levels by analysing the public discourse from social posts. To assess SLO levels, our insight is to extract and transform peoples’ stances towards an organisation into SLO levels. SIRTA achieves this by performing a chain of three text classification tasks, where it identifies task-relevant social posts, discovers key SLO risks discussed in the posts, and infers stances specific to the SLO risks. We leverage recent language understanding techniques (e.g., BERT) for building our classifiers. To monitor SLO levels over time, SIRTA employs quality control mechanisms to reliably identify SLO trends and variations of multiple organisations in a market. These are derived from the smoothed time series of their SLO levels based on exponentially-weighted moving average (EWMA) calculation. Our experimental results show that SIRTA is highly effective in distilling stances from social posts for SLO level assessment, and that the continuous monitoring of SLO levels afforded by SIRTA enables the early detection of critical SLO changes.  more » « less
Award ID(s):
1726260
PAR ID:
10205275
Author(s) / Creator(s):
Date Published:
Journal Name:
Proceedings of the 28th International Conference on Computational Linguistics: Industry Track
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Social media has become an indispensable resource in disaster response, providing real-time crowdsourced data on public experiences, needs, and conditions during crises. This user-generated content enables government agencies and emergency responders to identify emerging threats, prioritize resource allocation, and optimize relief operations through data-driven insights. We present an AI-powered framework that combines natural language processing with geospatial visualization to analyze disaster-related social media content. Our solution features a text analysis model that achieved an 81.4% F1 score in classifying Twitter/X posts, integrated with an interactive web platform that maps emotional trends and crisis situations across geographic regions. The system’s dynamic visualization capabilities allow authorities to monitor situational developments through an interactive map, facilitating targeted response coordination. The experimental results show the model’s effectiveness in extracting actionable intelligence from Twitter/X posts during natural disasters. 
    more » « less
  2. Al-Nofaie, H (Ed.)
    Prior research has demonstrated relationships between personality traits of social media users and the language used in their posts. Few studies have examined whether there are relationships between personality traits of users and how they use emojis in their social media posts. Emojis are digital pictographs used to express ideas and emotions. There are thousands of emojis, which depict faces with expressions, objects, animals, and activities. We conducted a study with two samples (n = 76 andn = 245) in which we examined how emoji use on X (formerly Twitter) related to users’ personality traits and language use in posts. Personality traits were assessed from participants in an online survey. With participants’ consent, we analyzed word usage in posts. Word frequencies were calculated using the Linguistic Inquiry Word Count (LIWC). In both samples, the results showed that those who used the most emojis had the lowest levels of openness to experience. Emoji use was unrelated to the other personality traits. In sample 1, emoji use was also related to use of words related to family, positive emotion, and sadness and less frequent use of articles and words related to insight. In sample 2, more frequent use of emojis in posts was related to more frequent use ofyoupronouns,Ipronouns, and more frequent use of negative function words and words related to time. The results support the view that social media users’ characteristics may be gleaned from the content of their social media posts. 
    more » « less
  3. null (Ed.)
    A social media phenomenon that has received limited research attention is the advent and propagation of viral online challenges. Several of these challenges entail self-harming behavior, which, combined with their viral nature, poses physical and psychological risks for both participants and viewers. The objective of this study is to identify the nature of what people post about the social media challenges that vary in their level of risk. To do so, we conducted a qualitative analysis of three viral social media challenges, the Blue Whale, Tide Pod, and Ice Bucket challenges, based on 180 YouTube videos, 3,607 comments on those YouTube videos, and 450 Twitter posts. We identified common themes across the YouTube videos, comments, and Twitter posts: (1) promoting education and awareness, (2) criticizing the participants, (3) providing detailed information about the participants, (4) giving viewers a tutorial on how to participate, and (5) attempting to understand this seemingly senseless online behavior. We used social norm theory to discuss what leads people to post about the challenges and how posts intended to raise awareness about harmful challenges could potentially create a contagion effect by spreading knowledge about them, thereby increasing participation. Finally, we proposed design implications that could potentially minimize the risks and propagation of harmful social media challenges. 
    more » « less
  4. Online social communities are becoming windows for learning more about the health of populations, through information about our health-related behaviors and outcomes from daily life. At the same time, just as public health data and theory has shown that aspects of the built environment can affect our health-related behaviors and outcomes, it is also possible that online social environments (e.g., posts and other attributes of our online social networks) can also shape facets of our life. Given the important role of the online environment in public health research and implications, factors which contribute to the generation of such data must be well understood. Here we study the role of the built and online social environments in the expression of dining on Instagram in Abu Dhabi; a ubiquitous social media platform, city with a vibrant dining culture, and a topic (food posts) which has been studied in relation to public health outcomes. Our study uses available data on user Instagram profiles and their Instagram networks, as well as the local food environment measured through the dining types (e.g., casual dining restaurants, food court restaurants, lounges etc.) by neighborhood. We find evidence that factors of the online social environment (profiles that post about dining versus profiles that do not post about dining) have different influences on the relationship between a user’s built environment and the social dining expression, with effects also varying by dining types in the environment and time of day. We examine the mechanism of the relationships via moderation and mediation analyses. Overall, this study provides evidence that the interplay of online and built environments depend on attributes of said environments and can also vary by time of day. We discuss implications of this synergy for precisely-targeting public health interventions, as well as on using online data for public health research. 
    more » « less
  5. null (Ed.)
    During disasters, it is critical to deliver emergency information to appropriate first responders. Name-based information delivery provides efficient, timely dissemination of relevant content to first responder teams assigned to different incident response roles. People increasingly depend on social media for communicating vital information, using free-form text. Thus, a method that delivers these social media posts to the right first responders can significantly improve outcomes. In this paper, we propose FLARE, a framework using 'Social Media Engines' (SMEs) to map social media posts (SMPs), such as tweets, to the right names. SMEs perform natural language processing-based classification and exploit several machine learning capabilities, in an online real-time manner. To reduce the manual labeling effort required for learning during the disaster, we leverage active learning, complemented by dispatchers with specific domain-knowledge performing limited labeling. We also leverage federated learning across various public-safety departments with specialized knowledge to handle notifications related to their roles in a cooperative manner. We implement three different classifiers: for incident relevance, organization, and fine-grained role prediction. Each class is associated with a specific subset of the namespace graph. The novelty of our system is the integration of the namespace with federated active learning and inference procedures to identify and deliver vital SMPs to the right first responders in a distributed multi-organization environment, in real-time. Our experiments using real-world data, including tweets generated by citizens during the wildfires in California in 2018, show our approach outperforming both a simple keyword-based classification and several existing NLP-based classification techniques. 
    more » « less