skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Hydroclimatic Controls on Salt Fluxes and Halite Deposition in the Dead Sea and the Shaping of “Salt Giants”
Award ID(s):
1936258
PAR ID:
10205552
Author(s) / Creator(s):
; ; ; ; ; ;
Date Published:
Journal Name:
Geophysical Research Letters
Volume:
47
Issue:
22
ISSN:
0094-8276
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Increasing salt production and use is shifting the natural balances of salt ions across Earth systems, causing interrelated effects across biophysical systems collectively known as freshwater salinization syndrome. In this Review, we conceptualize the natural salt cycle and synthesize increasing global trends of salt production and riverine salt concentrations and fluxes. The natural salt cycle is primarily driven by relatively slow geologic and hydrologic processes that bring different salts to the surface of the Earth. Anthropogenic activities have accelerated the processes, timescales and magnitudes of salt fluxes and altered their directionality, creating an anthropogenic salt cycle. Global salt production has increased rapidly over the past century for different salts, with approximately 300 Mt of NaCl produced per year. A salt budget for the USA suggests that salt fluxes in rivers can be within similar orders of magnitude as anthropogenic salt fluxes, and there can be substantial accumulation of salt in watersheds. Excess salt propagates along the anthropogenic salt cycle, causing freshwater salinization syndrome to extend beyond freshwater supplies and affect food and energy production, air quality, human health and infrastructure. There is a need to identify environmental limits and thresholds for salt ions and reduce salinization before planetary boundaries are exceeded, causing serious or irreversible damage across Earth systems. 
    more » « less
  2. We develop a Stockmayer fluid model that accounts for the dielectric responses of polar solvents (water, MeOH, EtOH, acetone, 1-propanol, DMSO, and DMF) and NaCl solutions. These solvent molecules are represented by Lennard-Jones (LJ) spheres with permanent dipole moments and the ions by charged LJ spheres. The simulated dielectric constants of these liquids are comparable to experimental values, including the substantial decrease in the dielectric constant of water upon the addition of NaCl. Moreover, the simulations predict an increase in the dielectric constant when considering the influence of ion translations in addition to the orientation of permanent dipoles. 
    more » « less
  3. null (Ed.)