skip to main content


Title: Prestressed MF-FRP: Experimental Study of Rapid Retrofit Solution for Deteriorated Prestressed C-Channel Beams
Award ID(s):
1916768
NSF-PAR ID:
10205842
Author(s) / Creator(s):
; ; ; ; ;
Date Published:
Journal Name:
Journal of Performance of Constructed Facilities
Volume:
35
Issue:
1
ISSN:
0887-3828
Page Range / eLocation ID:
04020124
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. This paper presents repairs to rural bridges in North Carolina that deteriorated as a result variously of aging, overweight traffic, and exposure to salts and sulfates. The prestressed concrete C-channel superstructures exhibited prestressing strand loss and displayed significant concrete spalling, with one structure having to be closed to traffic after a routine inspection. Analysis conducted using the American Association of State Highway and Transportations Officials (AASHTO) bridge load rating criteria concluded that repair techniques which strengthen deteriorated flexural elements without also restoring lost prestressing forces are insufficient to maintain load ratings in C-channel structures with heavily damaged prestressing tendons. A prestressed mechanically-fastened fiber-reinforced polymer (MF-FRP) retrofit solution was developed and successfully installed on three structures by the authors and North Carolina Department of Transportation maintenance crews. The most extensive of these three repairs is presented here in detail. The field applications and associated analysis show the temporary MF-FRP repair system is capable of restoring lost prestressing forces, allowing original inventory and operating ratings to remain in place until a permanent superstructure replacement can be scheduled. The most heavily repaired bridge remains in service after 23 months, its performance demonstrated by long-term monitoring data. As currently implemented, the MF-FRP repair is a viable temporary solution for maintaining traffic on a degraded structure while a replacement structure is designed, programmed, and implemented. Efforts to expand the MF-FRP repair into a longer-term solution are underway.

     
    more » « less
  2. null (Ed.)
    Structural health monitoring (SHM) activities are essential for achieving a realistic characterisation of bridge structural performance levels throughout the service life. These activities can help detect structural damage before the potential occurrence of component- or system-level structural failures. In addition to their application at discrete times, SHM systems can also be installed to provide long-term accurate and reliable data continuously throughout the entire service life of a bridge. Owing to their superior accuracy and long-term durability compared to traditional strain gages, fiber optic sensors are ideal in extracting accurate real-time strain and temperature data of bridge components. This paper presents a statistical damage detection and localisation approach to evaluate the performance of prestressed concrete bridge girders using fiber Bragg grating sensors. The presented approach employs Artificial Neural Networks to establish a relationship between the strain profiles recorded at different sensor locations across the investigated girder. The approach is capable of detecting and localising the presence of damage at the sensor location without requiring detailed loading information; accordingly, it can be suitable for long-term monitoring activities under normal traffic loads. Experimental laboratory data obtained from the structural testing of a large-scale prestressed concrete bridge girder is used to illustrate the approach. 
    more » « less
  3. Soft and continuously controllable grippers can be assembled from fluidic prestressed composite (FPC) actuators. Due to their highly deformable features, it is difficult to model such actuators for large deflections. This article proposes a new method for modeling large deflections of FPC actuators called the chained composite model (CCM) to characterize the quasi-static response to an applied fluid pressure and load. The CCM divides an FPC actuator into discrete elements and models each element by a small rotation model. The strain energy of each element and the work done by pressure and loads are computed using third-order displacement polynomials with unknown coefficients; then, the total energy is minimized to calculate stable shapes using the Rayleigh–Ritz method. This study provides a set of systematic design rules to help the robotics community create FPC actuators by understanding how their responses vary as a function of input forces and pressures for a number of modeling and design parameters. Composite actuators are fabricated and a soft gripper is developed to demonstrate the grasping ability of the FPCactuators. Pneumatic pressure and end loads are applied to the composite actuators, and their responses are measured. The modeled responses of the actuators are shown to be in agreement with the measured responses. 
    more » « less