skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Ediacaran reorganization of the marine phosphorus cycle
The Ediacaran Period (635 to 541 Ma) marks the global transition to a more productive biosphere, evidenced by increased availability of food and oxidants, the appearance of macroscopic animals, significant populations of eukaryotic phytoplankton, and the onset of massive phosphorite deposition. We propose this entire suite of changes results from an increase in the size of the deep-water marine phosphorus reservoir, associated with rising sulfate concentrations and increased remineralization of organic P by sulfate-reducing bacteria. Simple mass balance calculations, constrained by modern anoxic basins, suggest that deep-water phosphate concentrations may have increased by an order of magnitude without any increase in the rate of P input from the continents. Strikingly, despite a major shift in phosphorite deposition, a new compilation of the phosphorus content of Neoproterozoic and early Paleozoic shows little secular change in median values, supporting the view that changes in remineralization and not erosional P fluxes were the principal drivers of observed shifts in phosphorite accumulation. The trigger for these changes may have been transient Neoproterozoic weathering events whose biogeochemical consequences were sustained by a set of positive feedbacks, mediated by the oxygen and sulfur cycles, that led to permanent state change in biogeochemical cycling, primary production, and biological diversity by the end of the Ediacaran Period.  more » « less
Award ID(s):
1747731
PAR ID:
10206016
Author(s) / Creator(s):
; ; ;
Date Published:
Journal Name:
Proceedings of the National Academy of Sciences
Volume:
117
Issue:
22
ISSN:
0027-8424
Page Range / eLocation ID:
11961 to 11967
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract Temporal patterns in chemistry of headwater streams reflect responses of water and elemental cycles to perturbations occurring at local to global scales. We evaluated multi-scale temporal patterns in up to 32 y of monthly observations of stream chemistry (ammonium, calcium, dissolved organic carbon, nitrate, total dissolved phosphorus, and sulfate) in 22 reference catchments within the northern temperate zone of North America. Multivariate autoregressive state-space (MARSS) models were applied to quantify patterns at multi-decadal, seasonal, and shorter intervals during a period that encompassed warming climate, seasonal changes in precipitation, and regional declines in atmospheric deposition. Significant long-term trends in solute concentrations within a subset of the catchments were consistent with recovery from atmospheric deposition (e.g., calcium, nitrate, sulfate) and increased precipitation (e.g., dissolved organic carbon). Lack of evidence for multi-decadal trends in most catchments suggests resilience of northern temperate ecosystems or that subtle net effects of simultaneous changes in climate and disturbance regimes do not result in directional trends. Synchronous seasonal oscillations of solute concentrations occurred across many catchments, reflecting shared climate and biotic drivers of seasonality within the northern temperate zone. Despite shared patterns among catchments at a seasonal scale, multi-scale temporal patterns were statistically distinct among even adjacent headwater catchments, implying that local attributes of headwater catchments modify the signals imparted by atmospheric phenomena and regional disturbances. To effectively characterize hydrologic and biogeochemical responses to changing climate and disturbance regimes, catchment monitoring programs could include multiple streams with contributing areas that encompass regional heterogeneity in vegetation, topography, and elevation. Overall, detection of long-term patterns and trends requires monitoring multiple catchments at a frequency that captures periodic variation (e.g., seasonality) and a duration encompassing the perturbations of interest. 
    more » « less
  2. Abstract Oxygen availability is decreasing in many lakes and reservoirs worldwide, raising the urgency for understanding how anoxia (low oxygen) affects coupled biogeochemical cycling, which has major implications for water quality, food webs, and ecosystem functioning. Although the increasing magnitude and prevalence of anoxia has been documented in freshwaters globally, the challenges of disentangling oxygen and temperature responses have hindered assessment of the effects of anoxia on carbon, nitrogen, and phosphorus concentrations, stoichiometry (chemical ratios), and retention in freshwaters. The consequences of anoxia are likely severe and may be irreversible, necessitating ecosystem‐scale experimental investigation of decreasing freshwater oxygen availability. To address this gap, we devised and conducted REDOX (the Reservoir Ecosystem Dynamic Oxygenation eXperiment), an unprecedented, 7‐year experiment in which we manipulated and modeled bottom‐water (hypolimnetic) oxygen availability at the whole‐ecosystem scale in a eutrophic reservoir. Seven years of data reveal that anoxia significantly increased hypolimnetic carbon, nitrogen, and phosphorus concentrations and altered elemental stoichiometry by factors of 2–5× relative to oxic periods. Importantly, prolonged summer anoxia increased nitrogen export from the reservoir by six‐fold and changed the reservoir from a net sink to a net source of phosphorus and organic carbon downstream. While low oxygen in freshwaters is thought of as a response to land use and climate change, results from REDOX demonstrate that low oxygen can also be adriverof major changes to freshwater biogeochemical cycling, which may serve as an intensifying feedback that increases anoxia in downstream waterbodies. Consequently, as climate and land use change continue to increase the prevalence of anoxia in lakes and reservoirs globally, it is likely that anoxia will have major effects on freshwater carbon, nitrogen, and phosphorus budgets as well as water quality and ecosystem functioning. 
    more » « less
  3. Abstract Degradation of wetland ecosystems results from loss of hydrologic connectivity, nutrient enrichment, and altered fire regimes, among other factors. It is uncertain how drivers of wetland ecosystem processes and wetland vegetation communities interact in reversing the ecological trajectory from degraded to restored conditions. We analyzed biogeochemical and vegetation data collected in wetlands of the Florida Everglades at the start of (2015) and during (2018 and 2021) the initial stages of rehydration. Our objectives were to analyze the allocation of carbon and nutrients among ecosystem compartments and correlated trajectories of vegetation community change following rehydration, to identify the drivers of change, including fire, and analyze macrophyte species‐specific responses to drivers. We expected to see changes in vegetation toward more hydric communities that would differ based on wetland baseline conditions and the magnitude of the hydrologic change. During the study period, both length of inundation and surface water depth increased throughout wetlands in the region, and four fires occurred, which affected 51% of the sampling locations. We observed biogeochemical shifts in the wetland landscape, driven by both hydrology and fire. Total phosphorus concentrations in soil and flocculent detrital material decreased, while soil carbon:phosphorus and nitrogen:phosphorus mass ratios increased at sites further away from water management infrastructure. Transitions in vegetation communities were driven by an increase in hydroperiods and by the distinct changes in nutrient concentrations or soil stoichiometric ratios in each subregion. The abundance of macrophyte species typical of short‐hydroperiod prairies strongly decreased, while dominant long‐hydroperiod species, such asEleocharis cellulosa, expanded. Fire facilitated the expansion of thickly vegetated plumes of invasiveTyphaat sites close to the water inflow sources. Overall, restored hydrology shifted vegetation community composition toward higher abundance of long‐hydroperiod species within six years. In contrast, removal of invasive vegetation controlled by soil phosphorus concentrations will likely require long‐term and interactive restoration strategies. 
    more » « less
  4. Abstract The Ediacaran Period (~635–539 Ma) is marked by the emergence and diversification of complex metazoans linked to ocean redox changes, but the processes and mechanism of the redox evolution in the Ediacaran ocean are intensely debated. Here we use mercury isotope compositions from multiple black shale sections of the Doushantuo Formation in South China to reconstruct Ediacaran oceanic redox conditions. Mercury isotopes show compelling evidence for recurrent and spatially dynamic photic zone euxinia (PZE) on the continental margin of South China during time intervals coincident with previously identified ocean oxygenation events. We suggest that PZE was driven by increased availability of sulfate and nutrients from a transiently oxygenated ocean, but PZE may have also initiated negative feedbacks that inhibited oxygen production by promoting anoxygenic photosynthesis and limiting the habitable space for eukaryotes, hence abating the long-term rise of oxygen and restricting the Ediacaran expansion of macroscopic oxygen-demanding animals. 
    more » « less
  5. Abstract Climate change is increasing sulfate export and changing wetland extent in mountain regions. These changes may increase microbially mediated production of the neurotoxic substance methylmercury due to enhanced sulfate metabolism in mountain environments. Here, we assess methylmercury concentrations and formation rates across high-elevation wetlands in the Colorado Rocky Mountains. We also investigate sulfate controls on methylmercury production within subalpine peatlands by amending soils with sulfate to mimic increased stream export of sulfate from the alpine zone and measuring methylmercury formation rates for different sulfate treatments. We found that subalpine peatlands have statistically significant higher methylmercury concentrations and formation rates compared to alpine, mineral-soil wetlands. Methylmercury production in subalpine peatlands also increased significantly (p < 0.05) following sulfate additions; the highest rates occurred in sediments with intermediate extractable sulfate concentrations (~0.60–1.4 mg sulfate g-1 dry soil). Our study is the first to identify soil sulfate-related thresholds for methylmercury production and sulfate-limitation of methylmercury production in subalpine peatlands. These findings highlight important linkages between climate-driven mineral weathering and mercury cycling in mountain regions globally. 
    more » « less