skip to main content


Title: Mirror-image antiparallel β-sheets organize water molecules into superstructures of opposite chirality

Biomolecular hydration is fundamental to biological functions. Using phase-resolved chiral sum-frequency generation spectroscopy (SFG), we probe molecular architectures and interactions of water molecules around a self-assembling antiparallel β-sheet protein. We find that the phase of the chiroptical response from the O-H stretching vibrational modes of water flips with the absolute chirality of the (l-) or (d-) antiparallel β-sheet. Therefore, we can conclude that the (d-) antiparallel β-sheet organizes water solvent into a chiral supermolecular structure with opposite handedness relative to that of the (l-) antiparallel β-sheet. We use molecular dynamics to characterize the chiral water superstructure at atomic resolution. The results show that the macroscopic chirality of antiparallel β-sheets breaks the symmetry of assemblies of surrounding water molecules. We also calculate the chiral SFG response of water surrounding (l-) and (d-) LK7β to confirm the presence of chiral water structures. Our results offer a different perspective as well as introduce experimental and computational methodologies for elucidating hydration of biomacromolecules. The findings imply potentially important but largely unexplored roles of water solvent in chiral selectivity of biomolecular interactions and the molecular origins of homochirality in the biological world.

 
more » « less
Award ID(s):
1905169
NSF-PAR ID:
10206064
Author(s) / Creator(s):
; ; ; ; ; ;
Publisher / Repository:
Proceedings of the National Academy of Sciences
Date Published:
Journal Name:
Proceedings of the National Academy of Sciences
Volume:
117
Issue:
52
ISSN:
0027-8424
Page Range / eLocation ID:
p. 32902-32909
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Defined based on geometric concepts, the origin of biological homochirality including the single handedness of key building blocks, D-sugars and L-amino acids, is still heavily debated in many ongoing research endeavors. Origin aside, transmission and amplification of chirality across length scales are likely essential for the predominance of one handedness over the other in chiral systems and are attracting an unabated interest not only in biology but also in material science. To offer a measure for chirality and through-space chirality transfer, we here provide a report on recent progress toward the development of a suitable approach for an a priori prediction of chirality “strength” and efficacy of chirality transfer from a chiral solute to an achiral nematic solvent. We achieve this by combining an independently calculated, suitable pseudoscalar chirality indicator for the solute with another, independently calculated scalar solute–solvent shape compatibility factor. In our ongoing pursuit to put this approach to the test, we are advancing and refining a versatile experimental platform based on achiral gold nanoparticle cores varying in size, shape, and aspect ratio capped with monolayers of chiral molecules or on intrinsically chiral cellulose nanocrystals that serve as chiral solutes in an achiral nematic liquid crystal phase acting as a reporter medium. The pitch of the ensuing induced chiral nematic liquid crystal phase ultimately serves as a reporter medium that allows us to experimentally quantify and compare chirality and efficacy of chirality transfer. 
    more » « less
  2. Following the seminal theoretical work on the pleated β-sheet published by Pauling and Corey in 1951, the rippled β-sheet was hypothesized by the same authors in 1953. In the pleated β-sheet the interacting β-strands have the same chirality, whereas in the rippled β-sheet the interacting β-strands are mirror-images. Unlike with the pleated β-sheet that is now common textbook knowledge, the rippled β-sheet has been much slower to evolve. Much of the experimental work on rippled sheets came from groups that study aggregating racemic peptide systems over the course of the past decade. This includes MAX1/DMAX hydrogels (Schneider), L/D-KFE8 aggregating systems (Nilsson), and racemic Amyloid β mixtures (Raskatov). Whether a racemic peptide mixture is “ripple-genic” ( i.e. , whether it forms a rippled sheet) or “pleat-genic” ( i.e. , whether it forms a pleated sheet) is likely governed by a complex interplay of thermodynamic and kinetic effects. Structural insights into rippled sheets remain limited to only a very few studies that combined sparse experimental structural constraints with molecular modeling. Crystal structures of rippled sheets are needed so we can rationally design rippled sheet architectures. Here we report a high-resolution crystal structure, in which ( l , l , l )-triphenylalanine and ( d , d , d )-triphenylalanine form dimeric antiparallel rippled sheets, which pack into herringbone layer structures. The arrangements of the tripeptides and their mirror-images in the individual dimers were in excellent agreement with the theoretical predictions by Pauling and Corey. A subsequent mining of the PDB identified three orphaned rippled sheets among racemic protein crystal structures. 
    more » « less
  3. Abstract

    Janus nanoparticles capped with a hydrophobic and hydrophilic hemisphere of mercapto ligands can self‐assemble into hollow, emulsion‐like nanostructures in controlled media. As the nanoparticle emulsions are chiroptically active exhibiting a plasmonic circular dichroism absorption in the visible range, they can be exploited as a unique chiral nanoreactor by selective encapsulation ofd‐enantiomer into the water phase of the water‐in‐oil emulsions for directional functionalization of the nanoparticles and endow the resulting nanoparticles with select chirality. This is demonstrated in the present study with gold Janus nanoparticles functionalized with (hydrophobic) hexanethiolates and (hydrophilic) 3‐mercapto‐1,2‐propandiol, andd,l‐cysteine is used as the molecular probe. Experimental results demonstrate thatd‐cysteine is the preferred enantiomers entrapped within the nanoparticle emulsions, where the ensuing ligand exchange reaction is initially confined to the hydrophilic face of the Janus nanoparticles. This suggests that with a deliberate control of the reaction time, chiral Janus nanoparticles can be readily prepared by ligand exchange reactions even with a racemic mixture of ligands.

     
    more » « less
  4. Intracellular compartmentalization plays a pivotal role in cellular function, with membrane-bound organelles and membrane-less biomolecular 'condensates' playing key roles. These condensates, formed through liquid-liquid phase separation (LLPS), enable selective compartmentalization without the barrier of a lipid bilayer, thereby facilitating rapid formation/dissolution in response to stimuli. Intrinsically disordered proteins (IDPs) and/or proteins with intrinsically disordered regions (IDRs), which are often rich in charged and polar amino acid sequences, scaffold many condensates, often in conjunction with RNA. Comprehending the impact of IDP/IDR sequences on phase separation poses a challenge due to the extensive chemical diversity resulting from the myriad amino acids and post-translational modifications. To tackle this hurdle, one approach has been to investigate LLPS in simplified polypeptide systems, which offer a narrower scope within the chemical space for exploration. This strategy is supported by studies that have demonstrated how IDP function can largely be understood based on general chemical features, such as clusters or patterns of charged amino acids, rather than residue-level effects, and the ways in which these kinds of motifs give rise to an ensemble of conformations. Our lab has utilized complex coacervates assembled from oppositely-charged polypeptides as a simplified material analogue to the complexity of liquid-liquid phase separated biological condensates. Complex coacervation is an associative LLPS that occurs due to the electrostatic complexation of oppositely-charged macro-ions. This process is believed to be driven by the entropic gains resulting from the release of bound counterions and the reorganization of water upon complex formation. Apart from their direct applicability to IDPs, polypeptides also serve as excellent model polymers for investigating molecular interactions due to the wide range of available side-chain functionalities and the capacity to finely regulate their sequence, thus enabling precise control over interactions with guest molecules. Here, we discuss fundamental studies examining how charge patterning, hydrophobicity, chirality, and architecture affect the phase separation of polypeptide-based complex coacervates. These efforts have leveraged a combination of experimental and computational approaches that provide insight into the molecular level interactions. We also examine how these parameters affect the ability of complex coacervates to incorporate globular proteins and viruses. These efforts couple directly with our fundamental studies into coacervate formation, as such ‘guest’ molecules should not be considered as experiencing simple encapsulation and are instead active participants in the electrostatic assembly of coacervate materials. Interestingly, we observed trends in the incorporation of proteins and viruses into coacervates formed using different chain length polypeptides that are not well explained by simple electrostatic arguments and may be the result of more complex interactions between globular and polymeric species. Additionally, we describe experimental evidence supporting the potential for complex coacervates to improve the thermal stability of embedded biomolecules such as viral vaccines. Ultimately, peptide-based coacervates have the potential to help unravel the physics behind biological condensates while paving the way for innovative methods in compartmentalization, purification, and biomolecule stabilization. These advancements could have implications spanning from medicine to biocatalysis. 
    more » « less
  5. Abstract

    Synthetic chiral platforms can be a powerful platform for enantioselective interactions, especially when coupled with redox‐mediated electrochemical processes. While metallopolymers are versatile platforms for molecularly selective binding, their application for chiral applications is limited. In particular, the recognition and separation of biologically relevant chiral molecules can be key for biomanufacturing and diagnostics. Here, the design of chiral redox‐polymers enables electrochemically‐controlled enantioselective interactions, and supramolecular chirality is leveraged for enhancing recognition towards target enantiomers. Chiral redox‐metallopolymers are synthesized based on Ugi's amine‐inspired chiral monomers, and their enantioselective recognition toward ionic enantiomers such as tryptophan and naproxen is demonstrated, with higher enanhcement provided by the chiral redox‐polymer over the single‐site, chiral building bloack itelf. 2D nuclear magnetic resonance spectroscopy and solid‐state circular dichroism support the emergence of supramolecular chirality resulting from the intramolecular interaction between the ferrocene and the alkyl group in the backbone. The half potential shift of the redox‐polymers behaves linearly from 0% to 100%eel‐tryptophan to enable enantiomer quantification. Investigation on solvent polarity and pH effect reveal that the enantioselective mechanism is attributed to the subtle balance between hydrogen bonding and π–π interaction. This study highlights the potential of chiral redox‐metallopolymers as platforms for electrochemically‐modulated enantioselective interactions towards a range of amino acids and pharmaceutical carboxylates.

     
    more » « less