skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Normal-state and superconducting properties of Co-doped BaFe 2 As 2 and MgB 2 thin films after focused helium ion beam irradiation
Award ID(s):
1310087
PAR ID:
10206088
Author(s) / Creator(s):
; ; ; ; ; ; ; ; ; ; ; ;
Date Published:
Journal Name:
Superconductor Science and Technology
Volume:
32
Issue:
9
ISSN:
0953-2048
Page Range / eLocation ID:
095009
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Ion beam-induced deposition (IBID) using Pt(CO)2Cl2and Pt(CO)2Br2as precursors has been studied with ultrahigh-vacuum (UHV) surface science techniques to provide insights into the elementary reaction steps involved in deposition, complemented by analysis of deposits formed under steady-state conditions. X-ray photoelectron spectroscopy (XPS) and mass spectrometry data from monolayer thick films of Pt(CO)2Cl2and Pt(CO)2Br2exposed to 3 keV Ar+, He+, and H2+ions indicate that deposition is initiated by the desorption of both CO ligands, a process ascribed to momentum transfer from the incident ion to adsorbed precursor molecules. This precursor decomposition step is accompanied by a decrease in the oxidation state of the Pt(II) atoms and, in IBID, represents the elementary reaction step that converts the molecular precursor into an involatile PtX2species. Upon further ion irradiation these PtCl2or PtBr2species experience ion-induced sputtering. The difference between halogen and Pt sputter rates leads to a critical ion dose at which only Pt remains in the film. A comparison of the different ion/precursor combinations studied revealed that this sequence of elementary reaction steps is invariant, although the rates of CO desorption and subsequent physical sputtering were greatest for the heaviest (Ar+) ions. The ability of IBID to produce pure Pt films was confirmed by AES and XPS analysis of thin film deposits created by Ar+/Pt(CO)2Cl2, demonstrating the ability of data acquired from fundamental UHV surface science studies to provide insights that can be used to better understand the interactions between ions and precursors during IBID from inorganic precursors. 
    more » « less
  2. null (Ed.)
    Studies of the coordination chemistry between the diphenylamide ligand, NPh 2 , and the smaller rare-earth Ln III ions, Ln = Y, Dy, and Er, led to the structural characterization by single-crystal X-ray diffraction crystallography of both solvated and unsolvated complexes, namely, tris(diphenylamido-κ N )bis(tetrahydrofuran-κ O )yttrium(III), Y(NPh 2 ) 3 (THF) 2 or [Y(C 12 H 10 N) 3 (C 4 H 8 O) 2 ], 1-Y , and the erbium(III) (Er), 1-Er , analogue, and bis[μ-1κ N :2(η 6 )-diphenylamido]bis[bis(diphenylamido-κ N )yttrium(III)], [(Ph 2 N) 2 Y(μ-NPh 2 )] 2 or [Y 2 (C 12 H 10 N) 6 ], 2-Y , and the dysprosium(III) (Dy), 2-Dy , analogue. The THF ligands of 1-Er are modeled with disorder across two positions with occupancies of 0.627 (12):0.323 (12) and 0.633 (7):0.367 (7). Also structurally characterized was the tetrametallic Er III bridging oxide hydrolysis product, bis(μ-diphenylamido-κ 2 N : N )bis[μ-1κ N :2(η 6 )-diphenylamido]tetrakis(diphenylamido-κ N )di-μ 3 -oxido-tetraerbium(III) benzene disolvate, {[(Ph 2 N)Er(μ-NPh 2 )] 4 (μ-O) 2 }·(C 6 H 6 ) 2 or [Er 4 (C 12 H 10 N) 8 O 2 ]·2C 6 H 6 , 3-Er . The 3-Er structure was refined as a three-component twin with occupancies 0.7375:0.2010:0.0615. 
    more » « less
  3. CaF2, BaF2, and MgF2are low-index, infrared-transparent materials that are extensively used in optical systems. Despite their technological importance, a systematic investigation into the temperature dependence of their optical properties is lacking. In this study, spectroscopic ellipsometry was used to obtain the refractive index of monocrystalline CaF2, BaF2, and MgF2for wavelengths between 220 nm and 1700 nm, and for temperatures between 21 °C and 368 °C. The raw ellipsometric data was fit to a Sellmeier model with temperature-dependent oscillator terms to extract the real part of the refractive index of each material. The refractive index of CaF2and BaF2was observed to decrease linearly with increasing temperature, which can be largely attributed to a reduction in the mass density due to thermal expansion. In contrast, the refractive index of MgF2was found to vary nonlinearly with temperature, which suggests competing effects from the material’s electronic polarizability. The temperature-dependent refractive index data reported here provide a finely-resolved mapping of the thermo-optic coefficient for these three materials, which could inform the development of optical devices operating at elevated or unsteady temperatures. 
    more » « less