skip to main content


Title: Iterative optical diffraction tomography for illumination scanning configuration

Optical diffraction tomography (ODT) is used to reconstruct refractive-index distributions from multiple measurements in the object rotating configuration (ORC) or the illumination scanning configuration (ISC). Because of its fast data acquisition and stability, ISC-based ODT has been widely used for biological imaging. ODT typically fails to reconstruct multiply-scattering samples. The previously developed iterative ODT (iODT) was for the multiply-scattering objects in ORC, and could not be directly applied to ISC. To resolve this mismatch, we developed an ISC update and numerically demonstrated its accuracy. With the same prior knowledge, iODT-ISC outperforms conventional ODT in resolving the missing-angle problem.

 
more » « less
NSF-PAR ID:
10206177
Author(s) / Creator(s):
; ; ;
Publisher / Repository:
Optical Society of America
Date Published:
Journal Name:
Optics Express
Volume:
28
Issue:
26
ISSN:
1094-4087; OPEXFF
Format(s):
Medium: X Size: Article No. 39904
Size(s):
Article No. 39904
Sponsoring Org:
National Science Foundation
More Like this
  1. Optical diffraction tomography (ODT) is a label-free and noninvasive technique for biological imaging. However, ODT is only applicable to weakly scattering objects. To extend ODT to the multiple-scattering regime, more advanced inversion algorithms have been developed, including optimization-based ODT (Opti-ODT) and iterative ODT (iODT). In this paper, we propose a combined strategy, namely, an iODT initialization for Opti-ODT, based on the observed complementarity of their individual advantages. This study numerically demonstrates that under this combined strategy, the reconstruction can accurately converge to a better local minimum, especially in the case of multiply scattering objects with large optical path differences.

     
    more » « less
  2. Conventional optical diffraction tomography (ODT) techniques fail in the presence of multiple scattering, and the problem becomes even more challenging when the medium is also lossy. Iterative ODT (iODT), which was shown recently to be more tolerant to multiple scattering than conventional ODT, is here augmented with an error-subtraction (ES) module. Numerical results demonstrate the accuracy and efficiency of iODT with ES for reconstructing multiply-scattering objects with complex refractive index.

     
    more » « less
  3. Optical diffraction tomography (ODT) is an indispensable tool for studying objects in three dimensions. Until now, ODT has been limited to coherent light because spatial phase information is required to solve the inverse scattering problem. We introduce a method that enables ODT to be applied to imaging incoherent contrast mechanisms such as fluorescent emission. Our strategy mimics the coherent scattering process with two spatially coherent illumination beams. The interferometric illumination pattern encodes spatial phase in temporal variations of the fluorescent emission, thereby allowing incoherent fluorescent emission to mimic the behavior of coherent illumination. The temporal variations permit recovery of the spatial distribution of fluorescent emission with an inverse scattering model. Simulations and experiments demonstrate isotropic resolution in the 3D reconstruction of a fluorescent object.

     
    more » « less
  4. Abstract

    The notion of curvature on graphs has recently gained traction in the networks community, with the Ollivier–Ricci curvature (ORC) in particular being used for several tasks in network analysis, such as community detection. In this work, we choose a different approach and study augmentations of the discretization of the Ricci curvature proposed by Forman (AFRC). We empirically and theoretically investigate its relation to the ORC and the un-augmented Forman–Ricci curvature. In particular, we provide evidence that the AFRC frequently gives sufficient insight into the structure of a network to be used for community detection, and therefore provides a computationally cheaper alternative to previous ORC-based methods. Our novel AFRC-based community detection algorithm is competitive with an ORC-based approach.

     
    more » « less
  5. Abstract

    The high temperature exhaust heat from a solid oxide fuel cell (SOFC) can be captured and used as the primary thermal energy source for bottoming cycles. In this study, the waste heat from a fuel cell is captured and processed either through an organic Rankin cycle (ORC) to provide extra power or an absorption chiller (AC) to provide cooling for meeting the dynamic cooling demands of a residence/community. A spatially resolved dynamic model was developed in Simulink to study dynamic characteristics of an SOFC system. Also, a dynamic model was developed for the ORC and AC to study the dynamic characteristics and performance of the integrated system. This model was then used to evaluate the efficiency, capacity, and dispatchability of the system, based upon meeting measured load profiles of residential buildings. Dynamic data from a residential complex were used as an input to evaluate the dynamic system model. The SOFC was capable of following the highly dynamic load with an average electrical efficiency of 46%. An average of 7% more power was produced through the ORC cycle with an average efficiency of 10%. The AC generated an average 125 kW of cooling with an average coefficient of performance (COP) of 1.08.

     
    more » « less