skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Scalable Computation of Controlled Invariant Sets for Discrete-Time Linear Systems with Input Delays
In this paper, we first propose a method that can efficiently compute the maximal robust controlled invariant set for discrete-time linear systems with pure delay in input. The key to this method is to construct an auxiliary linear system (without delay) with the same state-space dimension of the original system in consideration and to relate the maximal invariant set of the auxiliary system to that of the original system. When the system is subject to disturbances, guaranteeing safety is harder for systems with input delays. Ability to incorporate any additional information about the disturbance becomes more critical in these cases. Motivated by this observation, in the second part of the paper, we generalize the proposed method to take into account additional preview information on the disturbances, while maintaining computational efficiency. Compared with the naive approach of constructing a higher dimensional system by appending the state-space with the delayed inputs and previewed disturbances, the proposed approach is demonstrated to scale much better with the increasing delay time.  more » « less
Award ID(s):
1931982 1553873
PAR ID:
10206362
Author(s) / Creator(s):
; ;
Date Published:
Journal Name:
2020 American Control Conference (ACC)
Page Range / eLocation ID:
4722 to 4728
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. null (Ed.)
    In this paper we revisit the problem of computing controlled invariant sets for controllable discrete-time linear systems and present a novel hierarchy for their computation. The key insight is to lift the problem to a higher dimensional space where the maximal controlled invariant set can be computed exactly and in closed-form for the lifted system. By projecting this set into the original space we obtain a controlled invariant set that is a subset of the maximal controlled invariant set for the original system. Building upon this insight we describe in this paper a hierarchy of spaces where the original problem can be lifted into so as to obtain a sequence of increasing controlled invariant sets. The algorithm that results from the proposed hierarchy does not rely on iterative computations. We illustrate the performance of the proposed method on a variety of scenarios exemplifying its appeal. 
    more » « less
  2. Existing safety control methods for non-stochastic systems become undefined when the system operates outside the maximal robust controlled invariant set (RCIS), making those methods vulnerable to unexpected initial states or unmodeled disturbances. In this work, we propose a novel safety control framework that can work both inside and outside the maximal RCIS, by identifying a worst-case disturbance that can be handled at each state and constructing the control inputs robust to that worst-case disturbance model. We show that such disturbance models and control inputs can be jointly computed by considering an invariance problem for an auxiliary system. Finally, we demonstrate the efficacy of our method both in simulation and in a drone experiment. 
    more » « less
  3. We revisit the problem of computing (robust) controlled invariant sets for discrete-time linear systems. Departing from previous approaches, we consider implicit, rather than explicit, representations for controlled invariant sets. Moreover, by considering such representations in the space of states and finite input sequences we obtain closed-form expressions for controlled invariant sets. An immediate advantage is the ability to handle high-dimensional systems since the closed-form expression is computed in a single step rather than iteratively. To validate the proposed method, we present thorough case studies illustrating that in safety-critical scenarios the implicit representation suffices in place of the explicit invariant set. The proposed method is complete in the absence of disturbances, and we provide a weak completeness result when disturbances are present. 
    more » « less
  4. null (Ed.)
    In this paper we revisit the problem of computing controlled invariant sets for controllable discrete-time linear systems. We propose a novel algorithm that does not rely on iterative computations. Instead, controlled invariant sets are computed in two moves: 1) we lift the problem to a higher dimensional space where a controlled invariant set is computed in closed-form; 2) we project the resulting set back to the original domain to obtain the desired controlled invariant set. One of the advantages of the proposed method is the ability to handle larger systems. 
    more » « less
  5. In this paper, we derive closed-form expressions for implicit controlled invariant sets for discrete-time controllable linear systems with measurable disturbances. In particular, a disturbance-reactive (or disturbance feedback) controller in the form of a parameterized finite automaton is considered. We show that, for a class of automata, the robust positively invariant sets of the corresponding closed-loop systems can be expressed by a set of linear inequality constraints in the joint space of system states and controller parameters. This leads to an implicit representation of the invariant set in a lifted space. We further show how the same parameterization can be used to compute invariant sets when the disturbance is not available for measurement. 
    more » « less