skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Challenges in Modeling Pheromone Capture by Pectinate Antennae
Synopsis Insect pectinate antennae are very complex objects and studying how they capture pheromone is a challenging mass transfer problem. A few works have already been dedicated to this issue and we review their strengths and weaknesses. In all cases, a common approach is used: the antenna is split between its macro- and microstructure. Fluid dynamics aspects are solved at the highest level of the whole antenna first, that is, the macrostructure. Then, mass transfer is estimated at the scale of a single sensillum, that is, the microstructure. Another common characteristic is the modeling of sensilla by cylinders positioned transversal to the flow. Increasing efforts in faithfully modeling the geometry of the pectinate antenna and their orientation to the air flow are required to understand the major advantageous capture properties of these complex organs. Such a model would compare pectinate antennae to cylindrical ones and may help to understand why such forms of antennae evolved so many times among Lepidoptera and other insect orders.  more » « less
Award ID(s):
1930744
PAR ID:
10206554
Author(s) / Creator(s):
; ;
Date Published:
Journal Name:
Integrative and Comparative Biology
Volume:
60
Issue:
4
ISSN:
1540-7063
Page Range / eLocation ID:
876 to 885
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Wagner, William R (Ed.)
    To probe its environment, the flying insect controllably flexes, twists, and maneuvers its antennae by coupling mechanical deformations with the sensory output. We question how the materials properties of insect antennae could influence their performance. A comparative study was conducted on four hawkmoth species: Manduca sexta, Ceratomia catalpae, Manduca quinquemaculata, and Xylophanes tersa. The morphology of the antennae of three hawkmoths that hover while feeding and one putatively non-nectar-feeding hawkmoth (Ceratomia catalpa) do not fundamentally differ, and all the antennae are comb-like (i.e., pectinate), markedly in males but weakly in females. Applying different weights to the free end of extracted cantilevered antennae, we discovered anisotropy in flexural rigidity when the antenna is forced to bend dorsally versus ventrally. The flexural rigidity of male antennae was less than that of females. Compared with the hawkmoths that hover while feeding, Ceratomia catalpae has almost two orders of magnitude lower flexural rigidity. Tensile tests showed that the stiffness of male and female antennae is almost the same. Therefore, the differences in flexural rigidity are explained by the distinct shapes of the antennal pectination. Like bristles in a comb, the pectinations provide extra rigidity to the antenna. We discuss the biological implications of these discoveries in relation to the flight habits of hawkmoths. Flexural anisotropy of antennae is expected in other groups of insects, but the targeted outcome may differ. Our work offers promising new applications of shaped fibers as mechanical sensors. 
    more » « less
  2. Flying insects exhibit remarkable capabilities in coordinating their olfactory sensory system and flapping wings during odour plume-tracking flights. While observations have indicated that their flapping wing motion can ‘sniff’ up the incoming plumes for better odour sampling range, how flapping motion impacts the odour concentration field around the antennae is unknown. Here, we reconstruct the body and wing kinematics of a forwards-flying butterfly based on high-speed images. Using an in-house computational fluid dynamics solver, we simulate the unsteady flow field and odourant transport process by solving the Navier–Stokes and odourant advection-diffusion equations. Our results show that, during flapping flight, the interaction between wing leading-edge vortices and antenna vortices strengthens the circulation of antenna vortices by over two-fold compared with cases without flapping motion, leading to a significant increase in odour intensity fluctuation along the antennae. Specifically, the interaction between the wings and antennae amplifies odour intensity fluctuations on the antennae by up to 8.4 fold. This enhancement is critical in preventing odour fatigue during odour-tracking flights. Further analysis reveals that this interaction is influenced by the inter-antennal angle. Adjusting this angle allows insects to balance between resistance to odour fatigue and the breadth of odour sampling. Narrower inter-antennal angles enhance fatigue resistance, while wider angles extend the sampling range but reduce resistance. Additionally, our findings suggest that while the flexibility of the wings and the thorax's pitching motion in butterflies do influence odour fluctuation, their impact is relatively secondary to that of the wing–antenna interaction. 
    more » « less
  3. Devices that can morph their functions on demand provide a rich yet unexplored paradigm for the next generation of electronic devices and sensors. For example, an antenna that can morph its shape can be used to adapt communication to different wireless standards or improve wireless signal reception. We utilize temperature-sensitive shape memory alloys (SMA) to realize a shape morphing antenna (ShMoA). In the designed architecture, multiple conjoined shape memory alloy sections form the antenna. The shape morphing of this antenna is achieved through temperature control. Different temperature threshold levels are used for programming the shape. Besides its conventional use for RF applications, ShMoA can serve as a multi-level temperature sensor, analogous to thermoreceptors in an insect antenna. ShMoA essentially combines the function of temperature sensing, embedded computing for detection of threshold crossings, and radio frequency readout, all in the single construct of a shape-morphing antenna (ShMoA) without the need for any battery or peripheral electronics. The ShMoA can be employed as bio-inspired wireless temperature sensing antennae on mobile robotic flies, insects, drones and other robots. It can also be deployed as programmable antennas for multi-standard wireless communication. 
    more » « less
  4. Reddy, Gadi V (Ed.)
    Abstract Insect antennae are crucial sensory organs that house numerous sensilla with receptors for perceiving a wide variety of cues dominating their world. Historically, inconsistent terminology and criteria have been used to classify antennal sensilla, which has greatly impeded the comparison of data even across closely related species. Longhorn beetles (Coleoptera: Cerambycidae) are no exception to this quandary, and despite their prominent antennae, few studies have investigated their antennal morphology and ultrastructure, and none have compared sensillar diversity and variation among cerambycids. Existing studies of longhorn beetle antennal sensilla include only 29 species in five of the eight cerambycid subfamilies and include misidentified sensilla types and conflicting terminology. As such, it is very difficult to conduct comparative morphological studies of antennal sensilla in longhorn beetles and challenging to understand inter- and intra-specific variation in the sensory systems of these beetles. To facilitate future comparative studies, we reviewed all accessible published papers that have used scanning and transmission electron microscopy (SEM and TEM) to investigate antennal sensilla in cerambycids, and present a first attempt at standardizing the classification of their documented sensilla types and subtypes. Specifically, we discuss seven major types of antennal sensilla (Böhm bristles, sensilla chaetica, chemosensory hairs, sensilla basiconica, dome shaped organs, sensilla coeloconica, and sensilla auricillica). We also imaged the antennae of relevant species of longhorn beetles using SEM and included images exemplifying as many of the sensilla types and subtypes as possible. 
    more » « less
  5. Denef, Vincent J. (Ed.)
    Light energy is essential for the existence of life on this planet, and only photosynthetic organisms, equipped with light-harvesting antenna protein complexes, can capture this energy, making it readily accessible to all other life forms. However, these light-harvesting antennae are not designed to function optimally under extreme high light, a condition which can cause photodamage and significantly reduce photosynthetic productivity. 
    more » « less