skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Exploring the Potential of 3D-printing in Biological Education: A Review of the Literature
Synopsis Science education is most effective when it provides authentic experiences that reflect professional practices and approaches that address issues relevant to students’ lives and communities. Such educational experiences are becoming increasingly interdisciplinary and can be enhanced using digital fabrication. Digital fabrication is the process of designing objects for the purpose of fabricating with machinery such as 3D-printers, laser cutters, and Computer Numerical Control (CNC) machines. Historically, these types of tools have been exceptionally costly and difficult to access; however, recent advancements in technological design have been accompanied by decreasing prices. In this review, we first establish the historical and theoretical foundations that support the use of digital fabrication as a pedagogical strategy to enhance learning. We specifically chose to focus attention on 3D-printing because this type of technology is becoming increasingly advanced, affordable, and widely available. We systematically reviewed the last 20 years of literature that characterized the use of 3D-printing in biological education, only finding a total of 13 articles that attempted to investigate the benefits for student learning. While the pedagogical value of student-driven creation is strongly supported by educational literature, it was challenging to make broad claims about student learning in relation to using or creating 3D-printed models in the context of biological education. Additional studies are needed to systematically investigate the impact of student-driven creation at the intersection of biology and engineering or computer science education.  more » « less
Award ID(s):
1930744
PAR ID:
10206556
Author(s) / Creator(s):
; ; ; ; ;
Date Published:
Journal Name:
Integrative and Comparative Biology
Volume:
60
Issue:
4
ISSN:
1540-7063
Page Range / eLocation ID:
896 to 905
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. STEM education is often disconnected from innovation and design, where students self-identify as solely scientists, artists, or technophiles, but rarely see the connection between the disciplines. The inclusion of arts (A) in STEM education (STEAM) offers an educational approach where students see how subjects are integrated through learning experiences that apply to everyday, developing personal connections and becoming motivated learners who understand how skills from each subject are needed for future careers. This project addresses both the disconnect between science, design, and technology and how high school students can benefit from innovative learning experiences in plant science that integrate these disciplines while gaining invaluable skills for future STEM careers. We used the Science-Art-Design-Technology (SADT) pedagogical approach, characterized by its project-based learning that relies on student teamwork and facilitation by educators. This approach was applied through a STEAM educational 3D plant module where teams: 1) investigated plants under research at a plant science research center, 2) designed and created 3D models of those plants, 3) experienced the application of 3D modeling in augmented and virtual reality platforms, and 4) disseminated project results. We used a mixed-method approach using qualitative and quantitative research methods to assess the impact of the 3D modeling module on students’ understanding of the intersection of art and design with science, learning and skills gains, and interests in STEAM subjects and careers. A total of 160 students from eight educational institutions (schools and informal programs) implemented the module. Student reflection questions revealed that students see art and design playing a role in science mainly by facilitating communication and further understanding and fostering new ideas. They also see science influencing art and design through the artistic creation process. The students acknowledged learning STEAM content and applications associated with plant science, 3D modeling, and augmented and virtual reality. They also acknowledged gaining research skills and soft skills such as collaboration and communication. Students also increased their interest in STEAM subjects and careers, particularly associated with plant science. The SADT approach, exemplified by the 3D plant module, effectively integrates science, art, design, and technology, enhancing student literacy in these fields, and providing students with essential 21st century competencies. The module's flexibility and experiential learning opportunities benefit students and educators, promoting interdisciplinary learning and interest in STEAM subjects and careers. This innovative approach is a valuable tool for educators, inspiring new ways of teaching and learning in STEAM education. 
    more » « less
  2. Innovation Competitions and Programs (ICPs), such as design challenges, hackathons, startup incubator competitions, boot camps, customer discovery labs, and accelerator programs, are informal learning experiences that supplement the formal education of Science, Technology, Engineering, and Mathematics (STEM) students. As learning dynamics are shifting toward becoming more personalized, location-unbounded, and spontaneous, informal learning is also becoming increasingly important for achieving the broader objectives of STEM education. ICPs are important in educating the next generation of innovators, and they serve as a gateway to innovation and entrepreneurial ecosystems in many colleges. The current literature provides limited quantitative and qualitative evidence on student learning because of participation in ICPs. This paper summarizes the findings of a study to investigate the learning and experiences of students who participated in ICPs. The results showed that overall, students rated technical and problem-solving skills higher than some innovation mindset skills, such as understanding people’s needs and pains. Furthermore, the results demonstrated relationships among student backgrounds, learning experiences, and ICP types. Findings suggested that incorporating more entrepreneurial elements in ICPs may improve the innovation mindset learning outcomes of ICPs 
    more » « less
  3. Innovation Competitions and Programs (ICPs), such as design challenges, hackathons, startup incubator competitions, boot camps, customer discovery labs, and accelerator programs, are informal learning experiences that supplement the formal education of Science, Technology, Engineering, and Mathematics (STEM) students. As learning dynamics are shifting toward becoming more personalized, location-unbounded, and spontaneous, informal learning is also becoming increasingly important for achieving the broader objectives of STEM education. ICPs are important in educating the next generation of innovators, and they serve as a gateway to innovation and entrepreneurial ecosystems in many colleges. The current literature provides limited quantitative and qualitative evidence on student learning because of participation in ICPs. This paper summarizes the findings of a multi-institutional study to investigate the learning and experiences of students who participated in ICPs. The results showed that overall, students rated technical and problem-solving skills higher than some innovation mindset skills, such as understanding people’s needs and pains. Furthermore, the results demonstrated relationships among student backgrounds, learning experiences, and ICP types. Findings suggested that incorporating more entrepreneurial elements in ICPs may improve the innovation mindset learning outcomes of ICPs. 
    more » « less
  4. ABSTRACT In order to provide students with the training required to meet the substantial and diverse challenges of the 21 st Century, effective programs in engineering, science, and technology must continue to take the lead in developing high-impact educational practices. Over the past year, faculty across several departments collaborated in the establishment of a campus 3D printing and fabrication center. This facility was founded to offer opportunities for exploring innovative active learning strategies in order to enhance the lives of Wabash College students and serve as a model to other institutions of higher education. This campus resource provides the infrastructure that will empower faculty and staff to explore diverse and meaningful cross-disciplinary collaborations related to teaching and learning across campus. New initiatives include the development of courses on design and fabrication, collaborative cross-disciplinary projects that bridge courses in the arts and sciences, 3D printing and fabrication-based undergraduate research internships, and entrepreneurial collaborations with local industry. These innovative approaches are meant to open the door to greater active learning experiences that empower and prepare students for creative and practical problem solving. Furthermore, service learning projects, community-based opportunities, and global outreach initiatives provide students with a sense of social responsibility, ethical awareness, leadership, and teamwork. This paper shares initial successes of this effort and goals for future enrichment of student learning. 
    more » « less
  5. Abstract: With recent interest in shape-changing interfaces, material-driven design, wearable technologies, and soft robotics, digital fabrication of soft actuatable material is increasingly in demand. Much of this research focuses on elastomers or non-stretchy air bladders. Computationally-controlled machine knitting offers an alternative fabrication technology which can rapidly produce soft textile objects that have a very different character: breathable, lightweight, and pleasant to the touch. These machines are well established and optimized for the mass production of garments, but compared to other digital fabrication techniques such as CNC machining or 3D printing, they have received much less attention as general purpose fabrication devices. In this work, we explore new ways to employ machine knitting for the creation of actuated soft objects. We describe the basic operation of this type of machine, then show new techniques for knitting tendon-based actuation into objects. We explore a series of design strategies for integrating tendons with shaping and anisotropic texture design. Finally, we investigate different knit material properties, including considerations for motor control and sensing. 
    more » « less