skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: A multi-dimensional, time-lapse, high content screening platform applied to schistosomiasis drug discovery
Abstract Approximately 10% of the world’s population is at risk of schistosomiasis, a disease of poverty caused by theSchistosomaparasite. To facilitate drug discovery for this complex flatworm, we developed an automated high-content screen to quantify the multidimensional responses ofSchistosoma mansonipost-infective larvae (somules) to chemical insult. We describe an integrated platform to process worms at scale, collect time-lapsed, bright-field images, segment highly variable and touching worms, and then store, visualize, and query dynamic phenotypes. To demonstrate the methodology, we treated somules with seven drugs that generated diverse responses and evaluated 45 static and kinetic response descriptors relative to concentration and time. For compound screening, we used the Mahalanobis distance to compare multidimensional phenotypic effects induced by 1323 approved drugs. Overall, we characterize both known anti-schistosomals and identify new bioactives. Apart from facilitating drug discovery, the multidimensional quantification provided by this platform will allow mapping of chemistry to phenotype.  more » « less
Award ID(s):
1817239 2401096
PAR ID:
10206628
Author(s) / Creator(s):
; ; ; ; ;
Publisher / Repository:
Nature Publishing Group
Date Published:
Journal Name:
Communications Biology
Volume:
3
Issue:
1
ISSN:
2399-3642
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Lu, Zhiyong (Ed.)
    Abstract MotivationForecasting the synergistic effects of drug combinations facilitates drug discovery and development, especially regarding cancer therapeutics. While numerous computational methods have emerged, most of them fall short in fully modeling the relationships among clinical entities including drugs, cell lines, and diseases, which hampers their ability to generalize to drug combinations involving unseen drugs. These relationships are complex and multidimensional, requiring sophisticated modeling to capture nuanced interplay that can significantly influence therapeutic efficacy. ResultsWe present a novel deep hypergraph learning method named Heterogeneous Entity Representation for MEdicinal Synergy (HERMES) prediction to predict the synergistic effects of anti-cancer drugs. Heterogeneous data sources, including drug chemical structures, gene expression profiles, and disease clinical semantics, are integrated into hypergraph neural networks equipped with a gated residual mechanism to enhance high-order relationship modeling. HERMES demonstrates state-of-the-art performance on two benchmark datasets, significantly outperforming existing methods in predicting the synergistic effects of drug combinations, particularly in cases involving unseen drugs. Availability and implementationThe source code is available at https://github.com/Christina327/HERMES. 
    more » « less
  2. Infections from parasitic nematodes (or roundworms) contribute to a significant disease burden and productivity losses for humans and livestock. The limited number of anthelmintics (or antinematode drugs) available today to treat these infections are rapidly losing their efficacy as multidrug resistance in parasites becomes a global health challenge. We propose an engineering approach to discover an anthelmintic drug combination that is more potent at killing wild-type Caenorhabditis elegans worms than four individual drugs. In the experiment, freely swimming single worms are enclosed in microfluidic drug environments to assess the centroid velocity and track curvature of worm movements. After analyzing the behavioral data in every iteration, the feedback system control (FSC) scheme is used to predict new drug combinations to test. Through a differential evolutionary search, the winning drug combination is reached that produces minimal centroid velocity and high track curvature, while requiring each drug in less than their EC 50 concentrations. The FSC approach is model-less and does not need any information on the drug pharmacology, signaling pathways, or animal biology. Toward combating multidrug resistance, the method presented here is applicable to the discovery of new potent combinations of available anthelmintics on C. elegans , parasitic nematodes, and other small model organisms. 
    more » « less
  3. Abstract Given the severity of the SARS-CoV-2 pandemic, a major challenge is to rapidly repurpose existing approved drugs for clinical interventions. While a number of data-driven and experimental approaches have been suggested in the context of drug repurposing, a platform that systematically integrates available transcriptomic, proteomic and structural data is missing. More importantly, given that SARS-CoV-2 pathogenicity is highly age-dependent, it is critical to integrate aging signatures into drug discovery platforms. We here take advantage of large-scale transcriptional drug screens combined with RNA-seq data of the lung epithelium with SARS-CoV-2 infection as well as the aging lung. To identify robust druggable protein targets, we propose a principled causal framework that makes use of multiple data modalities. Our analysis highlights the importance of serine/threonine and tyrosine kinases as potential targets that intersect the SARS-CoV-2 and aging pathways. By integrating transcriptomic, proteomic and structural data that is available for many diseases, our drug discovery platform is broadly applicable. Rigorous in vitro experiments as well as clinical trials are needed to validate the identified candidate drugs. 
    more » « less
  4. In Africa, many kids get sick from tiny worms called Schistosoma. These worms can slow children’s growth and development; damage the liver, intestines, and bladder; and sometimes lead to cancer or even death. Schistosoma can keep communities poor by reducing people’s ability to work. Over 800 million people are at risk of infection. People get infected when they play or wash in water filled with certain plants and snails. These plants grow fast because fertilizer from farmers’ fields washes into the water when it rains. We found that removing these plants can reduce Schistosoma. Plants that are removed can be turned into food for animals, compost for farms, or gas for cooking and electricity. This solution helps protect kids from getting sick and can even help to slow climate change. By working together, communities can clean their waterbodies and create a healthier, happier future, which is a win-win for people and nature. 
    more » « less
  5. Abstract Despite a vaccine, hepatitis B virus (HBV) remains a world-wide source of infections and deaths. We develop a whole-cell computational platform combining spatial and kinetic models describing the infection cycle of HBV in a hepatocyte host. We simulate key parts of the infection cycle with this whole-cell platform for 10 min of biological time, to predict infection progression, map out virus-host and virus-drug interactions. We find that starting from an established infection, decreasing the copy number of the viral envelope proteins shifts the dominant infection pathway from capsid secretion to re-importing the capsids into the nucleus, resulting in more nuclear-localized viral covalently closed circular DNA (cccDNA) and boosting transcription. This scenario can mimic the consequence of drugs designed to manipulate viral gene expression. Mutating capsid proteins facilitates capsid destabilization and disassembly at nuclear pore complexes, resulting in an increase in cccDNA copy number. However, excessive destabilization leads to premature cytoplasmic disassembly and does not increase the cccDNA counts. Finally, our simulations can predict the best drug dosage and its administration timing to reduce the cccDNA counts. Our adaptable computational platform can be parameterized to study other viruses and identify the most central viral pathways that can be targeted by drugs. 
    more » « less