skip to main content


Title: Weakening Atlantic overturning circulation causes South Atlantic salinity pile-up
Award ID(s):
1656907
NSF-PAR ID:
10207140
Author(s) / Creator(s):
;
Date Published:
Journal Name:
Nature Climate Change
Volume:
10
Issue:
11
ISSN:
1758-678X
Page Range / eLocation ID:
998 to 1003
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. null (Ed.)
    ABSTRACT Seismic rays traveling just below the Moho provide insights into the thermal and compositional properties of the upper mantle and can be detected as Pn phases from regional earthquakes. Such phases are routinely identified in the continents, but in the oceans, detection of Pn phases is limited by a lack of long-term instrument deployments. We present estimates of upper-mantle velocity in the equatorial Atlantic Ocean from Pn arrivals beneath, and flanking, the Mid-Atlantic Ridge and across several transform faults. We analyzed waveforms from 50 earthquakes with magnitude Mw>3.5, recorded over 12 months in 2012–2013 by five autonomous hydrophones and a broadband seismograph located on the St. Peter and St. Paul archipelago. The resulting catalog of 152 ray paths allows us to resolve spatial variations in upper-mantle velocities, which are consistent with estimates from nearby wide-angle seismic experiments. We find relatively high velocities near the St. Paul transform system (∼8.4  km s−1), compared with lower ridge-parallel velocities (∼7.7  km s−1). Hence, this method is able to resolve ridge-transform scale velocity variations. Ray paths in the lithosphere younger than 10 Ma have mean velocities of 7.9±0.5  km s−1, which is slightly lower than those sampled in the lithosphere older than 20 Ma (8.1  km±0.3  s−1). There is no apparent systematic relationship between velocity and ray azimuth, which could be due to a thickened lithosphere or complex mantle upwelling, although uncertainties in our velocity estimates may obscure such patterns. We also do not find any correlation between Pn velocity and shear-wave speeds from the global SL2013sv model at depths <150  km. Our results demonstrate that data from long-term deployments of autonomous hydrophones can be used to obtain rare and insightful estimates of uppermost mantle velocities over hundreds of kilometers in otherwise inaccessible parts of the deep oceans. 
    more » « less
  2. We examine the main drivers that may elevate biomass and biodiversity of non-chemosynthetic benthic megafauna of the lower bathyal (800-3500m depth) of the Mid-Atlantic Ridge in the North Atlantic Ocean (MAR). Specifically: 1. Primary production in surface waters (10°-48°N) from remote sensing data 2002-2020 over the MAR was not significantly different from abyssal regions to the east and west. We reject the hypothesis that presence of a mid ocean ridge may enhance surface primary production. 2. The quantity of particulate organic matter reaching the sea floor was estimated as a proportion of surface export production scaled by bathymetry. Flux was 1.3 to 3.0 times greater on the MAR as a function of shorter vertical transport distance from the surface than on adjacent abyssal regions. 3. Depth variation effect on species richness. Demersal fishes living between 41° and 60°N showed a maximum of species richness at 2000 m depth and linear increase in regional (Gamma) diversity of 32 species per 1,000 m elevation of the MAR above the abyss. Elevated topography provides niches for species that cannot otherwise survive. 4. Substrate heterogeneity. The MAR >95% covered with soft sediment with frequent hard rocky patches spaced at a mean nearest neighbour distance of <500 m. Over 90% were <1 km apart. Animals are readily able to disperse between such patches increasing biodiversity through the additive effect of soft and hard substrate fauna on the MAR. 5. Presence of a biogeographic overlap zone. The MAR harbours bathyal species known from Western Atlantic and Eastern Atlantic continental slopes with meridional asymmetry resulting in bias toward predominance of Eastern species. The mix of species contributes to increased diversity to the east of the MAR. Multiple factors support increase in biomass and biodiversity on the MAR. Biological data are almost entirely absent from 12° to 33°N, the part of the MAR which may be mined for polymetallic sulphide ore deposits. This study enables some predictions of biomass and biodiversity but there is urgent need for intensive biological sampling across the MAR throughout the proposed mining areas south of the Azores. 
    more » « less