skip to main content


Title: Distance dependent energy transfer dynamics from a molecular donor to a zeolitic imidazolate framework acceptor
Zeolitic Imidazolate frameworks (ZIFs) have been demonstrated as promising light harvesting and photocatalytic materials for solar energy conversion. To facilitate their application in photocatalysis, it is essential to develop a fundamental understanding of their light absorption properties and energy transfer dynamics. In this work, we report distance-dependent energy transfer dynamics from a molecular photosensitizer (RuN3) to ZIF-67, where the distance between RuN3 and ZIF-67 is finely tuned by depositing an ultrathin Al 2 O 3 layer on the ZIF-67 surface using an atomic layer deposition (ALD) method. We show that energy transfer time decreases with increasing distance between RuN3 and ZIF-67 and the Förster radius is estimated to be 14.4 nm.  more » « less
Award ID(s):
1654140
NSF-PAR ID:
10207874
Author(s) / Creator(s):
; ; ; ;
Date Published:
Journal Name:
Physical Chemistry Chemical Physics
Volume:
22
Issue:
44
ISSN:
1463-9076
Page Range / eLocation ID:
25445 to 25449
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. null (Ed.)
    Zeolitic imidazolate frameworks (ZIFs) represent a novel class of porous crystalline materials that have demonstrated potential as light harvesting materials for solar energy conversion. In order to facilitate their application in solar energy conversion, it is necessary to expand their absorption further into the realm of the solar spectrum. In this work, we report the incorporation of semiconductor cadmium sulfide nanowires (CdS NWs) into ZIF-67 (CdS@ZIF-67), where a broader region of the solar spectrum can be absorbed by CdS NWs and relayed to ZIF-67 through an energy transfer (EnT) process. Using steady-state emission and time resolved emission and absorption spectroscopy, we show that efficient EnT can occur from CdS NWs to ZIF-67 by selective excitation of CdS NWs. The EnT time is ∼729.9 ps, which corresponds to 71.2% EnT efficiency. 
    more » « less
  2. Owing to their porous structure and tunable framework, zeolitic imidazolate frameworks (ZIFs) have garnered considerable attention as promising photocatalytic materials. However, little is known regarding their photophysical properties. In this work, we report the photoinduced charge separation dynamics in a ZIF-67 thin film through interfacial electron transfer (ET) to methylene blue (MB + ) via ultrafast transient absorption spectroscopy. We show that the ET process occurs through two distinct pathways, including an ultrafast (<200 fs) process from the [Co II (mim) 2 ] units located on the surface of ZIF-67 film that are directly in contact with MB + and a relatively slower ET process with a 101.4 ps time constant from the units in the bulk of the film that were isolated from MB + by the surface units. This first direct evidence of the ET process from ZIF-67 to electron acceptor strongly suggests that ZIF materials may be used as intrinsic photocatalytic materials rather than inert hosts. 
    more » « less
  3. Li–S batteries have attracted great attention for their combined advantages of potentially high energy density and low cost. To tackle the capacity fade from polysulfide dissolution, we have developed a confinement approach by in situ encapsulating sulfur with a MOF-derived CoS 2 in a carbon framework (S/Z-CoS 2 ), which in turn was derived from a sulfur/ZIF-67 composite (S/ZIF-67) via heat treatment. The formation of CoS 2 was confirmed by X-ray absorption spectroscopy (XAS) and its microstructure and chemical composition were examined through cryogenic scanning/transmission electron microscopy (Cryo-S/TEM) imaging with energy dispersive spectroscopy (EDX). Quantitative EDX suggests that sulfur resides inside the cages, rather than externally. S/hollow ZIF-67-derived CoS 2 (S/H-CoS 2 ) was rationally designed to serve as a control material to explore the efficiency of such hollow structures. Cryo-STEM-EDX mapping indicates that the majority of sulfur in S/H-CoS 2 stays outside of the host, despite its high void volumetric fraction of ∼85%. The S/Z-CoS 2 composite exhibited highly improved battery performance, when compared to both S/ZIF-67 and S/H-CoS 2 , due to both the efficient physical confinement of sulfur inside the host and strong chemical interactions between CoS 2 and sulfur/polysulfides. Electrochemical kinetics investigations revealed that the CoS 2 could serve as an electrocatalyst to accelerate the redox reactions. The composite could provide an areal capacity of 2.2 mA h cm −2 after 150 cycles at 0.2C and 1.5 mA h cm −2 at 1C. This novel material provides valuable insights for further development of high-energy, high-rate and long-life Li–S batteries. 
    more » « less
  4. In photosynthesis, absorbed light energy transfers through a network of antenna proteins with near-unity quantum efficiency to reach the reaction center, which initiates the downstream biochemical reactions. While the energy transfer dynamics within individual antenna proteins have been extensively studied over the past decades, the dynamics between the proteins are poorly understood due to the heterogeneous organization of the network. Previously reported timescales averaged over such heterogeneity, obscuring individual interprotein energy transfer steps. Here, we isolated and interrogated interprotein energy transfer by embedding two variants of the primary antenna protein from purple bacteria, light-harvesting complex 2 (LH2), together into a near-native membrane disc, known as a nanodisc. We integrated ultrafast transient absorption spectroscopy, quantum dynamics simulations, and cryogenic electron microscopy to determine interprotein energy transfer timescales. By varying the diameter of the nanodiscs, we replicated a range of distances between the proteins. The closest distance possible between neighboring LH2, which is the most common in native membranes, is 25 Å and resulted in a timescale of 5.7 ps. Larger distances of 28 to 31 Å resulted in timescales of 10 to 14 ps. Corresponding simulations showed that the fast energy transfer steps between closely spaced LH2 increase transport distances by ∼15%. Overall, our results introduce a framework for well-controlled studies of interprotein energy transfer dynamics and suggest that protein pairs serve as the primary pathway for the efficient transport of solar energy. 
    more » « less
  5. null (Ed.)
    Microporous crystals have emerged as highly appealing catalytic materials for the plasma catalytic synthesis of ammonia. Herein, we demonstrate that zeolitic imidazolate frameworks (ZIFs) can be employed as efficient catalysts for the cold plasma ammonia synthesis using an atmospheric dielectric barrier discharge reactor. We studied two prototypical ZIFs denoted as ZIF-8 and ZIF-67, with a uniform window pore aperture of 3.4 Å. The resultant ZIFs displayed ammonia synthesis rates as high as 42.16 μmol NH3/min gcat. ZIF-8 displayed remarkable stability upon recycling. The dipole–dipole interactions between the polar ammonia molecules and the polar walls of the studied ZIFs led to relatively low ammonia uptakes, low storage capacity, and high observed ammonia synthesis rates. Both ZIFs outperform other microporous crystals including zeolites and conventional oxides in terms of ammonia production. Furthermore, we demonstrate that the addition of argon to the reactor chamber can be an effective strategy to improve the plasma environment. Specifically, the presence of argon helped to improve the plasma uniformity, making the reaction system more energy efficient by operating at a low specific energy input range allowing abundant formation of nitrogen vibrational species. 
    more » « less