skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: An On-Demand Service for Managing and Analyzing Arctic Sea Ice High Spatial Resolution Imagery
Sea ice acts as both an indicator and an amplifier of climate change. High spatial resolution (HSR) imagery is an important data source in Arctic sea ice research for extracting sea ice physical parameters, and calibrating/validating climate models. HSR images are difficult to process and manage due to their large data volume, heterogeneous data sources, and complex spatiotemporal distributions. In this paper, an Arctic Cyberinfrastructure (ArcCI) module is developed that allows a reliable and efficient on-demand image batch processing on the web. For this module, available associated datasets are collected and presented through an open data portal. The ArcCI module offers an architecture based on cloud computing and big data components for HSR sea ice images, including functionalities of (1) data acquisition through File Transfer Protocol (FTP) transfer, front-end uploading, and physical transfer; (2) data storage based on Hadoop distributed file system and matured operational relational database; (3) distributed image processing including object-based image classification and parameter extraction of sea ice features; (4) 3D visualization of dynamic spatiotemporal distribution of extracted parameters with flexible statistical charts. Arctic researchers can search and find arctic sea ice HSR image and relevant metadata in the open data portal, obtain extracted ice parameters, and conduct visual analytics interactively. Users with large number of images can leverage the service to process their image in high performance manner on cloud, and manage, analyze results in one place. The ArcCI module will assist domain scientists on investigating polar sea ice, and can be easily transferred to other HSR image processing research projects.  more » « less
Award ID(s):
1835784 1835512 1835507
PAR ID:
10207909
Author(s) / Creator(s):
; ; ; ; ; ; ; ;
Date Published:
Journal Name:
Data
Volume:
5
Issue:
2
ISSN:
2306-5729
Page Range / eLocation ID:
39
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract Mechanisms behind the phenomenon of Arctic amplification are widely discussed. To contribute to this debate, the (AC) 3 project was established in 2016 ( www.ac3-tr.de/ ). It comprises modeling and data analysis efforts as well as observational elements. The project has assembled a wealth of ground-based, airborne, shipborne, and satellite data of physical, chemical, and meteorological properties of the Arctic atmosphere, cryosphere, and upper ocean that are available for the Arctic climate research community. Short-term changes and indications of long-term trends in Arctic climate parameters have been detected using existing and new data. For example, a distinct atmospheric moistening, an increase of regional storm activities, an amplified winter warming in the Svalbard and North Pole regions, and a decrease of sea ice thickness in the Fram Strait and of snow depth on sea ice have been identified. A positive trend of tropospheric bromine monoxide (BrO) column densities during polar spring was verified. Local marine/biogenic sources for cloud condensation nuclei and ice nucleating particles were found. Atmospheric–ocean and radiative transfer models were advanced by applying new parameterizations of surface albedo, cloud droplet activation, convective plumes and related processes over leads, and turbulent transfer coefficients for stable surface layers. Four modes of the surface radiative energy budget were explored and reproduced by simulations. To advance the future synthesis of the results, cross-cutting activities are being developed aiming to answer key questions in four focus areas: lapse rate feedback, surface processes, Arctic mixed-phase clouds, and airmass transport and transformation. 
    more » « less
  2. The tethered balloon-borne measurement system BELUGA (Balloon-bornE moduLar Utility for profilinG the lower Atmosphere) was deployed over the Arctic sea ice for 4 weeks in summer 2020 as part of the Multidisciplinary drifting Observatory for the Study of Arctic Climate expedition. Using BELUGA, vertical profiles of dynamic, thermodynamic, aerosol particle, cloud, radiation, and turbulence properties were measured from the ground up to a height of 1,500 m. BELUGA was operated during an anomalously warm period with frequent liquid water clouds and variable sea ice conditions. Three case studies of liquid water phase, single-layer clouds observed on 3 days (July 13, 23, and 24, 2020) are discussed to show the potential of the collected data set to comprehensively investigate cloud properties determining cloud evolution in the inner Arctic over sea ice. Simulated back-trajectories show that the observed clouds have evolved within 3 different air masses (“aged Arctic,” “advected over sea ice,” and “advected over open ocean”), which left distinct fingerprints in the cloud properties. Strong cloud top radiative cooling rates agree with simulated results of previous studies. The weak warming at cloud base is mostly driven by the vertical temperature profile between the surface and cloud base. In-cloud turbulence induced by the cloud top cooling was similar in strength compared to former studies. From the extent of the mixing layer, it is speculated that the overall cloud cooling is stronger and thus faster in the warm oceanic air mass. Larger aerosol particle number concentrations and larger sizes were observed in the air mass advected over the sea ice and in the air mass advected over the open ocean. 
    more » « less
  3. Climate change has affected the Arctic Ocean (AO) and its marginal seas significantly. The reduction of sea ice in the Arctic region has altered the magnitude of photosynthetically available radiation (PAR) entering the water column, impacting primary productivity. Increasing cloudiness in the atmosphere and rising turbidity in the coastal waters of the Arctic region are considered as the major factors that counteract the effect of reduced sea ice on underwater PAR. Additionally, extreme solar zenith angles and sea-ice cover in the AO increase the complexity of retrieving PAR. In this study, a PAR algorithm based on radiative transfer in the atmosphere and satellite observations is implemented to evaluate the effect of these factors on PAR in the coastal AO. To improve the performance of the algorithm, a flag is defined to identify pixels containing open-water, sea-ice or cloud. The use of flag enabled selective application of algorithms to compute the input parameters for the PAR algorithm. The PAR algorithm is validated using in situ measurements from various coastal sites in the Arctic and sub-Arctic seas. The algorithm estimated daily integrated PAR above the sea surface with an uncertainty of 19% in summer. The uncertainty increased to 24% when the algorithm was applied year-round. The PAR values at the seafloor were estimated with an uncertainty of 76%, with 36% of the samples under sea ice and/or cloud cover. The robust performance of the PAR algorithm in the pan-Arctic region throughout the year will help to effectively study the temporal and spatial variability of PAR in the Arctic coastal waters. The calculated PAR data are used to quantify the changing trend in PAR at the seafloor in the coastal AO with depth < 100 m using MODIS-Aqua data from 2003 to 2020. The general trends calculated using the pixels with average PAR > 0.415 mol m−2 day−1 at the seafloor during summer indicate that the annual average of PAR entering the water column in the coastal AO between 2003 and 2020 increased by 23%. Concurrently, due to increased turbidity, the attenuation in the water column increased by 22%. The surge in incident PAR in the water column due to retreating sea ice first led to increased PAR observed at the seafloor (∼12% between 2003 and 2014). However, in the last decade, the rapid increase in light attenuation of the water column has restricted the increase in average annual PAR reaching the bottom in the coastal AO. 
    more » « less
  4. Abstract Radiative climate feedbacks in the Arctic have been extensively studied, but their spatial and seasonal variations have not been thoroughly examined. Using ERA5 reanalysis data, we examine seasonal variations in Arctic climate feedbacks and their relationship to sea‐ice loss based on changes from 1950–1979 to 1990–2019. The spring and summer seasons experienced large sea‐ice loss, strong surface albedo feedback, and large oceanic heat uptake. Arctic clouds exerted small net cooling in May‐June‐July but moderate warming during the cold season, especially over areas with large sea‐ice loss where cloud liquid and ice water content increased. Arctic water vapor feedback peaked in summer but was weak and uncorrelated with sea‐ice loss. Arctic positive lapse rate feedback (LRF) was strongest in winter over areas with large sea‐ice loss and weak inversion but uncorrelated with atmospheric stability, suggesting that oceanic heating from sea‐ice loss led to enhanced surface warming and the positive LRF. 
    more » « less
  5. null (Ed.)
    The ocean and atmosphere exert stresses on sea ice that create elongated cracks and leads which dominate the vertical exchange of energy, especially in cold seasons, despite covering only a small fraction of the surface. Motivated by the need of a spatiotemporal analysis of sea ice lead distribution, a practical workflow was developed to classify the high spatial resolution aerial images DMS (Digital Mapping System) along the Laxon Line in the NASA IceBridge Mission. Four sea ice types (thick ice, thin ice, open water, and shadow) were identified, and relevant sea ice lead parameters were derived for the period of 2012–2018. The spatiotemporal variations of lead fraction along the Laxon Line were verified by ATM (Airborne Topographic Mapper) surface height data and correlated with coarse spatial resolution sea ice motion, air temperature, and wind data through multiple regression models. We found that the freeboard data derived from sea ice leads were compatible with other products. The temperature and ice motion vorticity were the leading factors of the formation of sea ice leads, followed by wind vorticity and kinetic moments of ice motion. 
    more » « less