Abstract Mechanisms behind the phenomenon of Arctic amplification are widely discussed. To contribute to this debate, the (AC) 3 project was established in 2016 ( www.ac3-tr.de/ ). It comprises modeling and data analysis efforts as well as observational elements. The project has assembled a wealth of ground-based, airborne, shipborne, and satellite data of physical, chemical, and meteorological properties of the Arctic atmosphere, cryosphere, and upper ocean that are available for the Arctic climate research community. Short-term changes and indications of long-term trends in Arctic climate parameters have been detected using existing and new data. For example, a distinct atmospheric moistening, an increase of regional storm activities, an amplified winter warming in the Svalbard and North Pole regions, and a decrease of sea ice thickness in the Fram Strait and of snow depth on sea ice have been identified. A positive trend of tropospheric bromine monoxide (BrO) column densities during polar spring was verified. Local marine/biogenic sources for cloud condensation nuclei and ice nucleating particles were found. Atmospheric–ocean and radiative transfer models were advanced by applying new parameterizations of surface albedo, cloud droplet activation, convective plumes and related processes over leads, and turbulent transfer coefficients for stable surface layers. Four modesmore »
An On-Demand Service for Managing and Analyzing Arctic Sea Ice High Spatial Resolution Imagery
Sea ice acts as both an indicator and an amplifier of climate change. High spatial resolution (HSR) imagery is an important data source in Arctic sea ice research for extracting sea ice physical parameters, and calibrating/validating climate models. HSR images are difficult to process and manage due to their large data volume, heterogeneous data sources, and complex spatiotemporal distributions. In this paper, an Arctic Cyberinfrastructure (ArcCI) module is developed that allows a reliable and efficient on-demand image batch processing on the web. For this module, available associated datasets are collected and presented through an open data portal. The ArcCI module offers an architecture based on cloud computing and big data components for HSR sea ice images, including functionalities of (1) data acquisition through File Transfer Protocol (FTP) transfer, front-end uploading, and physical transfer; (2) data storage based on Hadoop distributed file system and matured operational relational database; (3) distributed image processing including object-based image classification and parameter extraction of sea ice features; (4) 3D visualization of dynamic spatiotemporal distribution of extracted parameters with flexible statistical charts. Arctic researchers can search and find arctic sea ice HSR image and relevant metadata in the open data portal, obtain extracted ice parameters, and more »
- Publication Date:
- NSF-PAR ID:
- 10207909
- Journal Name:
- Data
- Volume:
- 5
- Issue:
- 2
- Page Range or eLocation-ID:
- 39
- ISSN:
- 2306-5729
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Obeid, Iyad ; Picone, Joseph ; Selesnick, Ivan (Ed.)The Neural Engineering Data Consortium (NEDC) is developing a large open source database of high-resolution digital pathology images known as the Temple University Digital Pathology Corpus (TUDP) [1]. Our long-term goal is to release one million images. We expect to release the first 100,000 image corpus by December 2020. The data is being acquired at the Department of Pathology at Temple University Hospital (TUH) using a Leica Biosystems Aperio AT2 scanner [2] and consists entirely of clinical pathology images. More information about the data and the project can be found in Shawki et al. [3]. We currently have a National Science Foundation (NSF) planning grant [4] to explore how best the community can leverage this resource. One goal of this poster presentation is to stimulate community-wide discussions about this project and determine how this valuable resource can best meet the needs of the public. The computing infrastructure required to support this database is extensive [5] and includes two HIPAA-secure computer networks, dual petabyte file servers, and Aperio’s eSlide Manager (eSM) software [6]. We currently have digitized over 50,000 slides from 2,846 patients and 2,942 clinical cases. There is an average of 12.4 slides per patient and 10.5 slides per casemore »
-
Obeid, I. (Ed.)The Neural Engineering Data Consortium (NEDC) is developing the Temple University Digital Pathology Corpus (TUDP), an open source database of high-resolution images from scanned pathology samples [1], as part of its National Science Foundation-funded Major Research Instrumentation grant titled “MRI: High Performance Digital Pathology Using Big Data and Machine Learning” [2]. The long-term goal of this project is to release one million images. We have currently scanned over 100,000 images and are in the process of annotating breast tissue data for our first official corpus release, v1.0.0. This release contains 3,505 annotated images of breast tissue including 74 patients with cancerous diagnoses (out of a total of 296 patients). In this poster, we will present an analysis of this corpus and discuss the challenges we have faced in efficiently producing high quality annotations of breast tissue. It is well known that state of the art algorithms in machine learning require vast amounts of data. Fields such as speech recognition [3], image recognition [4] and text processing [5] are able to deliver impressive performance with complex deep learning models because they have developed large corpora to support training of extremely high-dimensional models (e.g., billions of parameters). Other fields that do notmore »
-
This paper describes a method of teaching image processing in a computer science (CS) course in which students obtain and analyze polar data through a computational guided inquiry (CGI) module. In CGI, the instructor guides the students in the process of learning, through the use of a computational tool: for this course, a Jupyter Notebook is used, consisting of alternating text and blocks of Python code that the students can modify as needed and execute. The students obtain images of polar ice and use them to learn about image processing while increasing their climate literacy. Students demonstrated learning of course disciplinary objectives through assessments built into the CGI module. Pre- and post-module surveys indicate increases in student self-reporting of comfort with Python and exposure to polar data. Over half of students indicated increased interest in learning more about polar research, and students overall rated the CGI modules positively. Improvements in climate literacy were tested through asking students to ask a question about a visual representation of polar data; results of this assessment were inconclusive. Future work will focus on strengthening the connection between goals, activities, and assessment, in order to better understand whether the goal of improved climate literacy wasmore »
-
Abstract. Sentinel-1 C-band synthetic aperture radar (SAR) images can be used to observe the drift of icebergs over the Southern Ocean with around 1–3 d of temporal resolution and 10–40 m of spatial resolution. The Google Earth Engine (GEE) cloud-based platform allows processing of a large quantity of Sentinel-1 images, saving time and computational resources. Inthis study, we process Sentinel-1 data via GEE to detect and track the drift of iceberg B43 during its lifespan of 3 years (2017–2020) in the Southern Ocean. First, to detect all candidate icebergs in Sentinel-1 images, we employ an object-based image segmentation (simple non-iterative clustering – SNIC) and a traditional backscatter threshold method. Next, we automatically choose and trace the location of the target iceberg bycomparing the centroid distance histograms (CDHs) of all detected icebergsin subsequent days with the CDH of the reference target iceberg. Using thisapproach, we successfully track iceberg B43 from the Amundsen Sea to the Ross Sea and examine its changes in area, speed, and direction. Threeperiods with sudden losses of area (i.e., split-offs) coincide with periodsof low sea ice concentration, warm air temperature, and high waves. Thisimplies that these variables may be related to mechanisms causing thesplit-off of the iceberg. Since the iceberg is generally surrounded bycompacted sea ice, itsmore »