skip to main content

Title: An overall view of temperature oscillations in the solar chromosphere with ALMA
By direct measurements of the gas temperature, the Atacama Large Millimeter/submillimeter Array (ALMA) has yielded a new diagnostic tool to study the solar chromosphere. Here, we present an overview of the brightness-temperature fluctuations from several high-quality and high-temporal-resolution (i.e. 1 and 2 s cadence) time series of images obtained during the first 2 years of solar observations with ALMA, in Band 3 and Band 6, centred at around 3 mm (100 GHz) and 1.25 mm (239 GHz), respectively. The various datasets represent solar regions with different levels of magnetic flux. We perform fast Fourier and Lomb–Scargle transforms to measure both the spatial structuring of dominant frequencies and the average global frequency distributions of the oscillations (i.e. averaged over the entire field of view). We find that the observed frequencies significantly vary from one dataset to another, which is discussed in terms of the solar regions captured by the observations (i.e. linked to their underlying magnetic topology). While the presence of enhanced power within the frequency range 3–5 mHz is found for the most magnetically quiescent datasets, lower frequencies dominate when there is significant influence from strong underlying magnetic field concentrations (present inside and/or in the immediate vicinity of the observed field of view). We discuss here more » a number of reasons which could possibly contribute to the power suppression at around 5.5 mHz in the ALMA observations. However, it remains unclear how other chromospheric diagnostics (with an exception of H α line-core intensity) are unaffected by similar effects, i.e. they show very pronounced 3-min oscillations dominating the dynamics of the chromosphere, whereas only a very small fraction of all the pixels in the 10 ALMA datasets analysed here show peak power near 5.5 mHz. This article is part of the Theo Murphy meeting issue ‘High-resolution wave dynamics in the lower solar atmosphere’. « less
; ; ; ; ; ; ; ; ; ; ; ; ; ;
Award ID(s):
Publication Date:
Journal Name:
Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences
Page Range or eLocation-ID:
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract Waves and oscillations are important solar phenomena, not only because they can propagate and dissipate energy in the chromosphere, but also because they carry information about the structure of the atmosphere in which they propagate. The nature of the 3 minute oscillations observed in the umbral region of sunspots is considered to be an effect of propagation of magnetohydrodynamic waves upward from below the photosphere. We present a study of sunspot oscillations and wave propagation in NOAA Active Region 12470 using an approximately 1 hr long data set acquired on 2015 December 17 by the Atacama Large Millimeter/submillimeter Array (ALMA), the Goode Solar Telescope (GST) operating at the Big Bear Solar Observatory, the Atmospheric Imaging Assembly on board the Solar Dynamics Observatory, and the Interface Region Imaging Spectrograph. The ALMA data are unique in providing a time series of direct temperature measurements in the sunspot chromosphere. The 2 s cadence of ALMA images allows us to well resolve the 3 minute periods typical of sunspot oscillations in the chromosphere. Fourier analysis is applied to ALMA Band 3 (∼100 GHz, ∼3 mm) and GST H α data sets to obtain power spectra as well as oscillation phase information. We analyzedmore »properties of the wave propagation by combining multiple wavelengths that probe physical parameters of solar atmosphere at different heights. We find that the ALMA temperature fluctuations are consistent with that expected for a propagating acoustic wave, with a slight asymmetry indicating nonlinear steepening.« less
  2. Abstract In this paper, we report the observed temporal correlation between extreme-ultraviolet (EUV) emission and magneto-acoustic oscillations in an EUV moss region, which is the footpoint region only connected by magnetic loops with million-degree plasma. The result is obtained from a detailed multi-wavelength data analysis of the region with the purpose of resolving fine-scale mass and energy flows that come from the photosphere, pass through the chromosphere and finally heat the solar transition region or the corona. The data set covers three atmospheric levels on the Sun, consisting of high-resolution broad-band imaging at TiO 7057 Å and the line of sight magnetograms for the photosphere, high-resolution narrow-band images at helium i 10830 Å for the chromosphere and EUV images at 171 Å for the corona. The 10830 Å narrow-band images and the TiO 7057 Å broad-band images are from a much earlier observation on 2012 July 22 with the 1.6 meter aperture Goode Solar Telescope (GST) at Big Bear Solar Observatory (BBSO) and the EUV 171 Å images and the magnetograms are from observations made by Atmospheric Imaging Assembly (AIA) or Helioseismic and Magnetic Imager (HMI) onboard the Solar Dynamics Observatory (SDO). We report the following new phenomena: (1) Repeatedmore »injections of chromospheric material appearing as 10830 Å absorption are squirted out from inter-granular lanes with a period of ∼ 5 minutes. (2) EUV emissions are found to be periodically modulated with similar periods of ∼ 5 minutes. (3) Around the injection area where 10830 Å absorption is enhanced, both EUV emissions and strength of the magnetic field are remarkably stronger. (4) The peaks on the time profile of the EUV emissions are found to be in sync with oscillatory peaks of the stronger magnetic field in the region. These findings may give a series of strong evidences supporting the scenario that coronal heating is powered by magneto-acoustic waves.« less
  3. Radio relics are diffuse, extended synchrotron sources that originate from shock fronts generated during cluster mergers. The massive merging galaxy cluster MACS J0717.5+3745 hosts one of the more complex relics known to date. We present upgraded Giant Metrewave Radio Telescope band 3 (300−500 MHz) and band 4 (550−850 MHz) observations. These new observations, combined with published VLA and the new LOFAR HBA data, allow us to carry out a detailed, high spatial resolution spectral analysis of the relic over a broad range of frequencies. The integrated spectrum of the relic closely follows a power law between 144 MHz and 5.5 GHz with a mean spectral slope α  = −1.16 ± 0.03. Despite the complex morphology of this relic, its subregions and the other isolated filaments also follow power-law behaviors, and show similar spectral slopes. Assuming diffusive shock acceleration, we estimated a dominant Mach number of ∼3.7 for the shocks that make up the relic. A comparison with recent numerical simulations suggests that in the case of radio relics, the slopes of the integrated radio spectra are determined by the Mach number of the accelerating shock, with α nearly constant, namely between −1.13 and −1.17, for Mach numbers 3.5 − 4.0. The spectral shapes inferred frommore »spatially resolved regions show curvature, we speculate that the relic is inclined along the line of sight. The locus of points in the simulated color-color plots changes significantly with the relic viewing angle. We conclude that projection effects and inhomogeneities in the shock Mach number dominate the observed spectral properties of the relic in this complex system. Based on the new observations we raise the possibility that the relic and a narrow-angle-tailed radio galaxy are two different structures projected along the same line of sight.« less
  4. Context. Radio relics are diffuse extended synchrotron sources that originate from shock fronts induced by galaxy cluster mergers. The particle acceleration mechanism at the shock fronts is still under debate. The galaxy cluster 1RXS J0603.3+4214 hosts one of the most intriguing examples of radio relics, known as the Toothbrush. Aims. In order to understand the mechanism(s) that accelerate(s) relativistic particles in the intracluster medium, we investigated the spectral properties of large-scale diffuse extended sources in the merging galaxy cluster 1RXS J0603.3+4214. Methods. We present new wideband radio continuum observations made with uGMRT and VLA. Our new observations, in combination with previously published data, allowed us to carry out a detailed high-spatial-resolution spectral and curvature analysis over a wide range of frequencies. Results. The integrated spectrum of the Toothbrush closely follows a power law over almost two orders of magnitude in frequency, with a spectral index of −1.16 ± 0.02. We do not find any evidence of spectral steepening below 8 GHz. The subregions of the Toothbrush also exhibit near-perfect power laws and identical spectral slopes, suggesting that the observed spectral index is rather set by the distribution of Mach numbers which may have a similar shape at different parts of the shockmore »front. Indeed, numerical simulations show an intriguing similar spectral index, indicating that the radio spectrum is dominated by the average over the inhomogeneities within the shock, with most of the emission coming from the tail of the Mach number distribution. In contrast to the Toothbrush, the spectra of the fainter relics show a high-frequency steepening. Moreover, the integrated spectrum of the halo also follows a power law from 150 MHz to 3 GHz with a spectral index of −1.16 ± 0.04. We do not find any evidence for spectral curvature, not even in subareas of the halo. This suggest a homogeneous acceleration throughout the cluster volume. Between the “brush” region of the Toothbrush and the halo, the color-color analysis reveals emission that was consistent with an overlap between the two different spectral regions. Conclusions. None of the relic structures, that is, the Toothbrush as a whole or its subregions or the other two fainter relics, show spectral shapes consistent with a single injection of relativistic electrons, such as at a shock, followed by synchrotron aging in a relatively homogeneous environment. Inhomogeneities in some combination of Mach number, magnetic field strength, and projection effects dominate the observed spectral shapes.« less
  5. Aims. Thanks to the high angular resolution, sensitivity, image fidelity, and frequency coverage of ALMA, we aim to improve our understanding of star formation. One of the breakthroughs expected from ALMA, which is the basis of our Cycle 5 ALMA-IMF Large Program, is the question of the origin of the initial mass function (IMF) of stars. Here we present the ALMA-IMF protocluster selection, first results, and scientific prospects. Methods. ALMA-IMF imaged a total noncontiguous area of ~53 pc 2 , covering extreme, nearby protoclusters of the Milky Way. We observed 15 massive (2.5 −33 × 10 3 M ⊙ ), nearby (2−5.5 kpc) protoclusters that were selected to span relevant early protocluster evolutionary stages. Our 1.3 and 3 mm observations provide continuum images that are homogeneously sensitive to point-like cores with masses of ~0.2 M ⊙ and ~0.6 M ⊙ , respectively, with a matched spatial resolution of ~2000 au across the sample at both wavelengths. Moreover, with the broad spectral coverage provided by ALMA, we detect lines that probe the ionized and molecular gas, as well as complex molecules. Taken together, these data probe the protocluster structure, kinematics, chemistry, and feedback over scales from clouds to filaments to cores.more »Results. We classify ALMA-IMF protoclusters as Young (six protoclusters), Intermediate (five protoclusters), or Evolved (four proto-clusters) based on the amount of dense gas in the cloud that has potentially been impacted by H  II region(s). The ALMA-IMF catalog contains ~700 cores that span a mass range of ~0.15 M ⊙ to ~250 M ⊙ at a typical size of ~2100 au. We show that this core sample has no significant distance bias and can be used to build core mass functions (CMFs) at similar physical scales. Significant gas motions, which we highlight here in the G353.41 region, are traced down to core scales and can be used to look for inflowing gas streamers and to quantify the impact of the possible associated core mass growth on the shape of the CMF with time. Our first analysis does not reveal any significant evolution of the matter concentration from clouds to cores (i.e., from 1 pc to 0.01 pc scales) or from the youngest to more evolved protoclusters, indicating that cloud dynamical evolution and stellar feedback have for the moment only had a slight effect on the structure of high-density gas in our sample. Furthermore, the first-look analysis of the line richness toward bright cores indicates that the survey encompasses several tens of hot cores, of which we highlight the most massive in the G351.77 cloud. Their homogeneous characterization can be used to constrain the emerging molecular complexity in protostars of high to intermediate masses. Conclusions. The ALMA-IMF Large Program is uniquely designed to transform our understanding of the IMF origin, taking the effects of cloud characteristics and evolution into account. It will provide the community with an unprecedented database with a high legacy value for protocluster clouds, filaments, cores, hot cores, outflows, inflows, and stellar clusters studies.« less