skip to main content


Title: Building Your Dream Team for Change
his panel paper presents research on connecting theory to practice and the lessons learned in a change project, with a focus on team formation during the early stages of change making. An important yet often overlooked step in any change project is pulling together individuals to form a competent and efficient team. A functional change-making team requires a variety of complementary skill sets, which may come from different disciplinary backgrounds and/or different prior experiences. Kotter (1996) uses the term “guiding coalition” to refer to an effective change-making team. He identifies four key characteristics of guiding coalitions: position power, expertise, credibility, leadership. Kotter also goes on to examine the importance of trust and a common goal. In a review of the literature on guiding coalitions, Have, Have, Huijsmans, and Otto (2017) found that though the concept of a guiding coalition is widely advocated in the literature, only one study showed a moderate correlation between the existence of a guiding coalition and the success of a change process (Abraham, Griffin, & Crawford, 1999). Have et al. (2017) conclude that while the literature provides little evidence to the value of a guiding coalition, it does provide evidence that Kotter’s characteristics of a guiding coalition (position power, expertise, credibility, leadership skills, trust in leadership, and setting common goals) individually have positive effects on the outcomes of a change project. However, we don’t know how these characteristics interact. This analysis of team building and complementary skill sets emerges from our participatory action research with the NSF REvolutionizing engineering and computer science Departments (RED) teams to investigate the change process within STEM higher education. The research-to-practice cycle is integral to our project; data gathered through working with the RED teams provides insights that are then translated into applied, hands-on practices. We utilize an abductive analysis approach, a qualitative methodology that moves recursively between the data and theory-building to remain open to new or contradictory findings, keeping existing theory in mind while not developing formal hypotheses (Timmermans & Tavory, 2012). We find that many of the teams have learned lessons in the early stages of the change process around the guiding coalition characteristics, and our analysis builds on the literature by examining how these characteristics interact. For example, the expertise of the social scientists and education researchers help discern which change strategies have supporting evidence and fit the context, in addition to what is reasonable for planning, implementation, and evaluation. The results presented in this paper connect theory to practice, clarifying practices for building effective change-making teams within higher education.  more » « less
Award ID(s):
1649318
NSF-PAR ID:
10208052
Author(s) / Creator(s):
; ; ; ; ;
Date Published:
Journal Name:
2019 ASEE Virtual Annual Conference Content Access
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. This panel paper presents research on connecting theory to practice and the lessons learned in a change project, with a focus on team formation during the early stages of change making. An important yet often overlooked step in any change project is pulling together individuals to form a competent and efficient team. The literature has identified six key characteristics of a guiding coalition (i.e., an effective change-making team): position power, expertise, credibility, leadership, trust, and a common goal. In this qualitative study of 10 teams working on systemic change projects at their respective institutions, we examine the process of team formation through the framework of guiding coalitions. We find that the characteristics of a guiding coalition shift and evolve over time, as relationships among team members (and with their stakeholders) continue to grow. The results presented in this paper connect theory to practice, sharing practices for building effective change-making teams within higher education. Permalink: https://peer.asee.org/32489. 
    more » « less
  2. Our NSF funded project—Creating National Leadership Cohorts to Make Academic Change Happen (NSF 1649318)—represents a strategic partnership between researchers and practitioners in the domain of academic change. The principle investigators from the Making Academic Change Happen team from Rose-Hulman Institute of Technology provide familiarity with the literature of practical organizational change and package this into action-oriented workshops and ongoing support for teams funded through the REvolutionizing engineering and computer science Departments (RED) program. The PIs from the Center for Evaluation & Research for STEM Equity at the University of Washington provide expertise in social science research in order to investigate how the the RED teams’ change projects unfold and how the teams develop as members of national leadership cohorts for change in engineering and computer science education. Our poster for ASEE 2018 will focus on what we have learned thus far regarding the dynamics of the researcher/practitioner partnership through the RED Participatory Action Research (REDPAR) Project. According to Worrall (2007), good partnerships are “founded on trust, respect, mutual benefit, good communities, and governance structures that allow democratic decision-making, process improvement, and resource sharing.” We have seen these elements emerge through the work of the partnership to create mutual benefits. For example, the researchers have been given an “insider’s” perspective on the practitioners’ approach—their goals, motivations for certain activities, and background information and research. The practitioners’ perspective is useful for the researchers to learn since the practitioners’ familiarity with the organizational change literature has influenced the researchers’ questions and theoretical models. The practitioners’ work with the RED teams has provided insights on the teams, how they are operating, the challenges they face, and aspects of the teams’ work that may not be readily available to the researchers. As a result, the researchers have had increased access to the teams to collect data. The researchers, in turn, have been able to consider how to make their analyses useful and actionable for change-makers, the population that the practitioners are more familiar with. Insights from the researchers provide both immediate and long-term benefits to programming and increased professional impact. The researchers are trained observers, each of whom brings a unique disciplinary perspective to their observations. The richness, depth, and clarity of their observations adds immeasurably to the quality of practitioners’ interactions with the RED teams. The practitioners, for example, have revised workshop content in response to the researchers’ observations, thus ensuring that the workshop content serves the needs of the RED teams. The practitioners also benefit from the joint effort on dissemination, since they can contribute to a variety of dissemination efforts (journal papers, conference presentations, workshops). We plan to share specific examples of the strategic partnership during the poster session. In doing so, we hope to encourage researchers to seek out partnerships with practitioners in order to bridge the gap between theory and practice in engineering and computer science education. 
    more » « less
  3. This research paper investigates how individual change agents come together to form effective teams. Improving equity within academic engineering requires changes that are often too complex and too high-risk for a faculty member to pursue on their own. Teams offer the advantage of combining a diverse skill set of many individuals, as well as bringing together insider knowledge and external specialist expertise. However, in order for teams of academic change agents to function effectively, they must overcome the challenges of internal politics, power differentials, and group conflict. This analysis of team formation emerges from our participatory action research with recipients of the NSF Revolutionizing Engineering Departments (RED) grants. Through an NSF-funded collaboration between the University of Washington and Rose-Hulman Institute of Technoliogy, we work with the RED teams to research the process of change as they work to improve equity and inclusion within their institutions. Utilizing longitudinal qualitative data from focus group discussions with 16 teams at the beginning and midpoints of their projects, we examine the development of teams to transform engineering education. Drawing on theoretical frameworks from social movement theory, we highlight the importance of creating a unified team voice and developing a sense of group agency. Teams have a better chance of achieving their goals if members are able to create a unified voice—that is, a shared sense of purpose and vision for their team. We find that the development of a team’s unified voice begins with proposal writing. When members of RED teams did not collaboratively write the grant proposal, they found it necessary to devote more time to develop a sense of shared vision for their project. For many RED teams, the development of a unified voice was further strengthened through external messaging, as they articulated a “we” in opposition to a “they” who have different values or interests. Group agency develops as a result of team members perceiving their goals as attainable and their efforts, as both individuals and a group, as worthwhile. That is, group agency is dependent on both the credibility of the team as well as trust among team members. For some of the RED teams, the NSF requirement to include social scientists and education researchers on their teams gave the engineering team members new, increased exposure to these fields. RED teams found that creating mutual respect was foundational for working across disciplinary differences and developing group agency. 
    more » « less
  4. Abstract Background Team-based instructional change is a promising model for improving undergraduate STEM instruction. Teams are more likely to produce sustainable, innovative, and high-quality outcomes than individuals working alone. However, teams also tend to involve higher risks of failure and can result in inefficient allocation of valuable resources. At this point, there is limited knowledge of how teams in the context of STEM higher education should work to achieve desirable outcomes. Results In this study, we collect semi-structured interview data from 23 team members from a total of 4 teams at 3 institutions across the USA. We analyze the results using a grounded theory approach and connect them to the existing literature. This study builds upon the first part of our work that developed a model of team inputs that lead to team outcomes. In this part, we identify the mechanisms by which input characteristics influence teamwork and outcomes. Team member data expand this initial model by identifying key aspects of team processes and emergent states. In this paper, we present five team processes: strategic leadership, egalitarian power dynamics, team member commitment, effective communication, and clear decision-making processes, that shape how teams work together, and three emergent states: shared vision, psychological safety , and team cohesion , that team members perceived as important aspects of how teams feel and think when working together. Conclusions This work furthers our understanding of how instructional change teams can be successful. However, due to the highly complex nature of teams, further investigation with more teams is required to test and enrich the emerging theory. 
    more » « less
  5. Research and evidence-based practices that center sense of belonging and engineering identity development drive strong outcomes for undergraduate students in engineering—especially those who are first-generation college students, from low-income families, and identify as other underrepresented groups in engineering (Deil-Amen, 2011; Hurtado, Cabrera, Lin, & Arellano, 2009; Patrick & Prybutok, 2018). The process from ideation to organizational implementation is not well-documented in the literature on student success, leaving a gap in practitioners’ understanding of how to bring strong, research-informed practices to fruition in their institutions. Implementation is arguably as important as the design of a student intervention and knowing how to implement a good idea is an art and a science. This paper explores the various people and processes that take theory to practice for a National Science Foundation Improving Undergraduate STEM Education funded program. In this paper, I invoke an autoethnographic approach to reflect on the experience of designing a student-facing program while managing the organizational systems that empower or restrain transformative organizational change for students. Autoethnography as a methodology can be a helpful mode to understanding practice, as the researcher can move more fluidly between their lived experience and the organizational, sociological, or psychosocial theory that it mirrors (Berry & Hodges, 2015). The proposed paper discusses my team’s approaches to working with stakeholders and gatekeepers in our organization and in our community to execute a program designed to build sense of belonging and engineering identity while supporting academic attainment of underserved student populations using Community Cultural Wealth (Yosso, 2005) and Street-Level Bureaucracy (Lipsky, 1980) as theoretical lenses. A small, summer-intensive program required the cooperation and capital of gatekeepers across the campus of our large, research university in the southwestern United States. This program, which serves students from marginalized ethnic and socioeconomic backgrounds in engineering disciplines, became the basis for an NSF Improving Undergraduate STEM Education award. Students spent part of their summer (six weeks during the pilot program, which evolved to ten weeks for the second cohort) taking summer classes that helped them advance into their sophomore year of an engineering degree. They also took a career development class, which featured regular field trips to various regional engineering employers. Outcomes from the pilot program and subsequent year are promising, and include high rates of persistence, strong academic performance, and increased sense of engineering identity, but this paper focuses on the structure of the program, the need for collaborators, and the way that the team implemented an initiative which challenges the assumptions of stakeholders from within and outside of the institution. Major themes discussed are personal reflections of the process of coalition-building, gaining buy-in from critical partners on-campus and in the community, and co-investing in programmatic improvement with early cohorts of participating students. 
    more » « less