skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Stability of Monoterpene-Derived α-Hydroxyalkyl-Hydroperoxides in Aqueous Organic Media: Relevance to the Fate of Hydroperoxides in Aerosol Particle Phases
The alpha-hydroxyalkyl-hydroperoxides [R-(H)C(-OH)(-OOH), alpha-HH] produced in the ozonolysis of unsaturated organic compounds may contribute to secondary organic aerosol (SOA) aging. alpha-HHs' inherent instability, however, hampers their detection and a positive assessment of their actual role. Here we report, for the first time, the rates and products of the decomposition of the alpha-HHs generated in the ozonolysis of atmospherically important monoterpenes alpha-pinene (alpha-P), d-limonene (d-L), gamma-terpinene (gamma-Tn), and alpha-terpineol (alpha-Tp) in water/acetonitrile (W/AN) mixtures. We detect alpha-HHs and multifunctional decomposition products as chloride adducts by online electrospray ionization mass spectrometry. Experiments involving D2O and (H2O)-O-18, instead of (H2O)-O-16, and an OH-radical scavenger show that alpha-HHs decompose into gem-diols + H2O2 rather than free radicals. alpha-HHs decay mono- or biexponentially depending on molecular structure and solvent composition. e-Fold times, tau(1)(/e), in water-rich solvent mixtures range from tau(1)(/e), = 15-45 min for monoterpene-derived alpha-HHs to tau(1)(/e) > 10(3) min for the alpha-Tp-derived alpha-HH. All tau(1)(/e)'s dramatically increase in <20% (v/v) water. Decay rates of the alpha-Tp-derived alpha-HH in pure water increase at lower pH (2.3 <= pH <= 3.3). The hydroperoxides detected in day-old SOA samples may reflect their increased stability in water-poor media and/or the slow decomposition of alpha-HHs from functionalized terpenes.  more » « less
Award ID(s):
1744353
PAR ID:
10208096
Author(s) / Creator(s):
; ; ; ;
Date Published:
Journal Name:
Environmental science and technology
Volume:
54
Issue:
7
ISSN:
0194-0287
Page Range / eLocation ID:
3890–3899
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. We recently demonstrated that the heterogeneous hydroxyl radical (OH) oxidation is an important aging process for isoprene epoxydiol-derived secondary organic aerosol (IEPOX-SOA) that alters its chemical composition, and thus, aerosol physicochemical properties. Notably, dimeric species in IEPOX-SOA were found to heterogeneously react with OH at a much faster rate than monomers, suggesting that the initial oligomeric content of freshly-generated IEPOX-SOA particles may affect its subsequent atmospheric oxidation. Aerosol acidity could in principle influence this aging process by enhancing the formation of sulfated and non-sulfated oligomers in freshly-generated IEPOX-SOA. Many multifunctional organosulfate (OS) products derived from heterogeneous OH oxidation of sulfur-containing IEPOX-SOA have been observed in cloud water residues and ice nucleating particles and could affect the ability of aged IEPOX-SOA particles to act as cloud condensation nuclei. Hence, this study systematically investigated the effect of aerosol acidity on the kinetics and products resulting from heterogeneous OH oxidation of IEPOX-SOA particles. We reacted gas-phase IEPOX with inorganic sulfate particles of varying pH (0.5 to 2.5) in an indoor smog chamber operated under dark, steady-state conditions to form freshly-generated IEPOX-SOA particles. These particles were aged at a relative humidity of 65% in an oxidation flow reactor (OFR) for 0-21 days of equivalent atmospheric OH exposure. Through molecular-level chemical analyses by hydrophilic interaction liquid chromatography method interfaced to electrospray ionization high-resolution quadrupole time- of-flight mass spectrometry (HILIC/ESI-HR-QTOFMS), we observed that highly acidic aerosol has higher oligomer ratio and exhibit much slower mass decay with OH oxidation (pH=0.5, lifetime = 56 days) as compared to less acidic aerosols (pH=2.5, lifetime=17 days). Based on atomic force microscopy (AFM) analysis, aerosol acidity could also affect the morphology and viscosity of IEPOX-SOA during OH oxidation process. 
    more » « less
  2. We recently demonstrated that the heterogeneous hydroxyl radical (OH) oxidation is an important aging process for isoprene epoxydiol-derived secondary organic aerosol (IEPOX-SOA) that alters its chemical composition, and thus, aerosol physicochemical properties. Notably, dimeric species in IEPOX-SOA were found to heterogeneously react with OH at a much faster rate than monomers, suggesting that the initial oligomeric content of freshly-generated IEPOX-SOA particles may affect its subsequent atmospheric oxidation. Aerosol acidity could in principle influence this aging process by enhancing the formation of sulfated and non-sulfated oligomers in freshly-generated IEPOX-SOA. Many multifunctional organosulfate (OS) products derived from heterogeneous OH oxidation of sulfur-containing IEPOX-SOA have been observed in cloud water residues and ice nucleating particles and could affect the ability of aged IEPOX-SOA particles to act as cloud condensation nuclei. Hence, this study systematically investigated the effect of aerosol acidity on the kinetics and products resulting from heterogeneous OH oxidation of IEPOX-SOA particles. We reacted gas-phase IEPOX with inorganic sulfate particles of varying pH (0.5 to 2.5) in an indoor smog chamber operated under dark, steady-state conditions to form freshly-generated IEPOX-SOA particles. These particles were aged at a relative humidity of 65% in an oxidation flow reactor (OFR) for 0-21 days of equivalent atmospheric OH exposure. Through molecular-level chemical analyses by hydrophilic interaction liquid chromatography method interfaced to electrospray ionization high-resolution quadrupole time-of-flight mass spectrometry (HILIC/ESI-HR-QTOFMS), we observed that highly acidic aerosol has higher oligomer ratio and exhibit much slower mass decay with OH oxidation (pH=0.5, lifetime = 56 days) as compared to less acidic aerosols (pH=2.5, lifetime=17 days). Based on atomic force microscopy (AFM) analysis, aerosol acidity could also affect the morphology and viscosity of IEPOX-SOA during OH oxidation process. 
    more » « less
  3. ABSTRACT: At fixed aerosol acidity, we recently demonstrated that dimers in isoprene epoxydiol-derived secondary organic aerosol (IEPOX-SOA) can heterogeneously react with hydroxyl radical (·OH) at faster rates than monomers. Aerosol acidity influences this aging process by enhancing the formation of oligomers in freshly generated IEPOX-SOA. Therefore, we systematically examined the role of aerosol acidity on kinetics and products resulting from heterogeneous ·OH oxidation of freshly generated IEPOX-SOA. IEPOX reacted with inorganic sulfate aerosol of varying initial pH (0.5, 1.5, and 2.5) in a steady state smog chamber to yield a constant source of freshly generated IEPOX-SOA, which was aged in an oxidation flow reactor for 0−22 equiv days of atmospheric ·OH exposure. Molecular-level chemical analyses revealed that the most acidic sulfate aerosol (pH 0.5) formed the largest oligomeric mass fraction, causing the slowest IEPOX-SOA mass decay with aging. Reactive uptake coefficients of ·OH (γOH) were 0.24 ± 0.06, 0.40 ± 0.05, and 0.49 ± 0.20 for IEPOX-SOA generated at pH 0.5, 1.5, and 2.5, respectively. IEPOXSOA became more liquid-like for pH 1.5 and 2.5, while exhibiting an irregular pattern for pH 0.5 with aging. Using kinetic and physicochemical data derived for a single aerosol pH in atmospheric models could inaccurately predict the fate of the IEPOX-SOA. 
    more » « less
  4. The daytime oxidation of biogenic hydrocarbons is attributed to both OH radicals and O3, while nighttime chemistry is dominated by the reaction with O3 and NO3 radicals. Here, the diurnal pattern of Secondary Organic Aerosol (SOA) originating from biogenic hydrocarbons was intensively evaluated under varying environmental conditions (temperature, humidity, sunlight intensity, NOx levels, and seed conditions) by using the UNIfied Partitioning Aerosol phase Reaction (UNIPAR) model, which comprises multiphase gas-particle partitioning and in-particle chemistry. The oxidized products of three different hydrocarbons (isoprene, α-pinene, and β-caryophyllene) were predicted by using near explicit gas mechanisms for four different oxidation paths (OH, O3, NO3, and O(3P)) during day and night. The gas mechanisms implemented the Master Chemical Mechanism (MCM v3.3.1), the reactions that formed low volatility products via peroxy radical (RO2) autoxidation, and self- and cross-reactions of nitrate-origin RO2. In the model, oxygenated products were then classified into volatility-reactivity base lumping species, which were dynamically constructed under varying NOx levels and aging scales. To increase feasibility, the UNIPAR model that equipped mathematical equations for stoichiometric coefficients and physicochemical parameters of lumping species was integrated with the SAPRC gas mechanism. The predictability of the UNIPAR model was demonstrated by simulating chamber-generated SOA data under varying environments day and night. Overall, the SOA simulation decoupled to each oxidation path indicated that the nighttime isoprene SOA formation was dominated by the NO3-driven oxidation, regardless of NOx levels. However, the oxidation path to produce the nighttime α-pinene SOA gradually transited from the NO3-initiated reaction to ozonolysis as NOx levels decreased. For daytime SOA formation, both isoprene and α-pinene were dominated by the OH-radical initiated oxidation. The contribution of the O(3P) path to all biogenic SOA formation was negligible in daytime. Sunlight during daytime promotes the decomposition of oxidized products via photolysis and thus, reduces SOA yields. Nighttime α-pinene SOA yields were significantly higher than daytime SOA yields, although the nighttime α-pinene SOA yields gradually decreased with decreasing NOx levels. For isoprene, nighttime chemistry yielded higher SOA mass than daytime at the higher NOx level (isoprene/NOx > 5 ppbC/ppb). The daytime isoprene oxidation at the low NOx level formed epoxy-diols that significantly contributed SOA formation via heterogeneous chemistry. For isoprene and α-pinene, daytime SOA yields gradually increased with decreasing NOx levels. The daytime SOA produced more highly oxidized multifunctional products and thus, it was generally more sensitive to the aqueous reactions than the nighttime SOA. β-Caryophyllene, which rapidly oxidized and produced SOA with high yields, showed a relatively small variation in SOA yields from changes in environmental conditions (i.e., NOx levels, seed conditions, and diurnal pattern), and its SOA formation was mainly attributed to ozonolysis day and night. To mimic the nighttime α-pinene SOA formation under the polluted urban atmosphere, α-pinene SOA formation was simulated in the presence of gasoline fuel. The simulation suggested the growth of α-pinene SOA in the presence of gasoline fuel gas by the enhancement of the ozonolysis path under the excess amount of ozone, which is typical in urban air. We concluded that the oxidation of the biogenic hydrocarbon with O3 or NO3 radicals is a source to produce a sizable amount of nocturnal SOA, despite of the low emission at night. 
    more » « less
  5. Abstract We recently demonstrated that the heterogeneous hydroxyl radical (·OH) oxidation is an important aging process for isoprene epoxydiol-derived secondary organic aerosol (IEPOX-SOA) that alters its chemical composition, and thus, aerosol physicochemical properties. Notably, dimeric species in IEPOX-SOA were found to heterogeneously react with ·OH at a much faster rate than monomers, suggesting that the initial oligomeric content of freshly-generated IEPOX-SOA particles may affect its subsequent atmospheric oxidation. Aerosol acidity could in principle influence this aging process by enhancing the formation of sulfated and non-sulfated oligomers in freshly-generated IEPOX-SOA. Many multifunctional organosulfate (OS) products derived from heterogeneous ·OH oxidation of sulfur-containing IEPOX-SOA have been observed in cloud water residues and ice nucleating particles and could affect the ability of aged IEPOX-SOA particles to act as cloud condensation nuclei. Hence, this study systematically investigated the effect of aerosol acidity on the kinetics and products resulting from heterogeneous ·OH oxidation of IEPOX-SOA particles. Gas-phase IEPOX was reacted with inorganic sulfate particles of varying pH (0.5 to 2.0) in an indoor smog chamber operated under dark, steady-state conditions to form freshly-generated IEPOX-SOA particles. These particles were then aged at a relative humidity of 60% in an oxidation flow reactor (OFR) for 0-15 days of equivalent atmospheric ·OH exposure. Aged IEPOX-SOA particles were sampled by an online aerosol chemical speciation monitor (ACSM) to measure real-time aerosol mass and chemical changes of the SOA particles, and were also collected onto Teflon filters and into PILS vials for molecular-level chemical analyses by hydrophilic liquid interaction chromatography method interfaced to electrospray ionization high-resolution quadrupole time-of-flight mass spectrometry (HILIC/ESI-HR-QTOFMS), ion chromatography, and total OS mass amounts. 
    more » « less