skip to main content

Title: NSF FAIR Chemical Data Publishing Guidelines Workshop on Chemical Structures and Spectra: Major Outcomes and Outlooks for the Chemistry Community
The National Science Foundation Office of Advanced Cyberinfrastructure (NSF-OAC) funded a workshop in March 2019 focused on advancing the sharing of machine-readable chemical structures and spectra. Around 40 stakeholders from the chemistry, chemical information, and software communities took part in the two-day workshop entitled “FAIR Chemical Data Publishing Guidelines for Chemical Structures and Spectra.” Major topics discussed included publishing data workflows and guidelines, FAIR criteria/metadata profiles, value propositions, a publisher implementation pilot, and community support and engagement. This report summarizes the workshop conversations, major outcomes, and target areas for further activities. Primary outcomes from the workshop include identification of key metadata elements for sharing machine-readable structures and spectra, a sample of concise author guidelines, and a publisher proposal to accept enhanced supporting information files including these data types and associated metadata alongside articles. Selected target areas for further activities include the creation of author file and metadata packaging tools to facilitate easy compilation of data, and increased training for stakeholders specifically in the generation and handling of machine-readable file formats. We conclude this report with our outlooks and highlight several related community efforts initiated after the workshop.
Authors:
;
Award ID(s):
1838958
Publication Date:
NSF-PAR ID:
10208140
Journal Name:
eCommonsCornell
ISSN:
2372-5524
Sponsoring Org:
National Science Foundation
More Like this
  1. Obeid, I. (Ed.)
    The Neural Engineering Data Consortium (NEDC) is developing the Temple University Digital Pathology Corpus (TUDP), an open source database of high-resolution images from scanned pathology samples [1], as part of its National Science Foundation-funded Major Research Instrumentation grant titled “MRI: High Performance Digital Pathology Using Big Data and Machine Learning” [2]. The long-term goal of this project is to release one million images. We have currently scanned over 100,000 images and are in the process of annotating breast tissue data for our first official corpus release, v1.0.0. This release contains 3,505 annotated images of breast tissue including 74 patients with cancerous diagnoses (out of a total of 296 patients). In this poster, we will present an analysis of this corpus and discuss the challenges we have faced in efficiently producing high quality annotations of breast tissue. It is well known that state of the art algorithms in machine learning require vast amounts of data. Fields such as speech recognition [3], image recognition [4] and text processing [5] are able to deliver impressive performance with complex deep learning models because they have developed large corpora to support training of extremely high-dimensional models (e.g., billions of parameters). Other fields that do notmore »have access to such data resources must rely on techniques in which existing models can be adapted to new datasets [6]. A preliminary version of this breast corpus release was tested in a pilot study using a baseline machine learning system, ResNet18 [7], that leverages several open-source Python tools. The pilot corpus was divided into three sets: train, development, and evaluation. Portions of these slides were manually annotated [1] using the nine labels in Table 1 [8] to identify five to ten examples of pathological features on each slide. Not every pathological feature is annotated, meaning excluded areas can include focuses particular to these labels that are not used for training. A summary of the number of patches within each label is given in Table 2. To maintain a balanced training set, 1,000 patches of each label were used to train the machine learning model. Throughout all sets, only annotated patches were involved in model development. The performance of this model in identifying all the patches in the evaluation set can be seen in the confusion matrix of classification accuracy in Table 3. The highest performing labels were background, 97% correct identification, and artifact, 76% correct identification. A correlation exists between labels with more than 6,000 development patches and accurate performance on the evaluation set. Additionally, these results indicated a need to further refine the annotation of invasive ductal carcinoma (“indc”), inflammation (“infl”), nonneoplastic features (“nneo”), normal (“norm”) and suspicious (“susp”). This pilot experiment motivated changes to the corpus that will be discussed in detail in this poster presentation. To increase the accuracy of the machine learning model, we modified how we addressed underperforming labels. One common source of error arose with how non-background labels were converted into patches. Large areas of background within other labels were isolated within a patch resulting in connective tissue misrepresenting a non-background label. In response, the annotation overlay margins were revised to exclude benign connective tissue in non-background labels. Corresponding patient reports and supporting immunohistochemical stains further guided annotation reviews. The microscopic diagnoses given by the primary pathologist in these reports detail the pathological findings within each tissue site, but not within each specific slide. The microscopic diagnoses informed revisions specifically targeting annotated regions classified as cancerous, ensuring that the labels “indc” and “dcis” were used only in situations where a micropathologist diagnosed it as such. Further differentiation of cancerous and precancerous labels, as well as the location of their focus on a slide, could be accomplished with supplemental immunohistochemically (IHC) stained slides. When distinguishing whether a focus is a nonneoplastic feature versus a cancerous growth, pathologists employ antigen targeting stains to the tissue in question to confirm the diagnosis. For example, a nonneoplastic feature of usual ductal hyperplasia will display diffuse staining for cytokeratin 5 (CK5) and no diffuse staining for estrogen receptor (ER), while a cancerous growth of ductal carcinoma in situ will have negative or focally positive staining for CK5 and diffuse staining for ER [9]. Many tissue samples contain cancerous and non-cancerous features with morphological overlaps that cause variability between annotators. The informative fields IHC slides provide could play an integral role in machine model pathology diagnostics. Following the revisions made on all the annotations, a second experiment was run using ResNet18. Compared to the pilot study, an increase of model prediction accuracy was seen for the labels indc, infl, nneo, norm, and null. This increase is correlated with an increase in annotated area and annotation accuracy. Model performance in identifying the suspicious label decreased by 25% due to the decrease of 57% in the total annotated area described by this label. A summary of the model performance is given in Table 4, which shows the new prediction accuracy and the absolute change in error rate compared to Table 3. The breast tissue subset we are developing includes 3,505 annotated breast pathology slides from 296 patients. The average size of a scanned SVS file is 363 MB. The annotations are stored in an XML format. A CSV version of the annotation file is also available which provides a flat, or simple, annotation that is easy for machine learning researchers to access and interface to their systems. Each patient is identified by an anonymized medical reference number. Within each patient’s directory, one or more sessions are identified, also anonymized to the first of the month in which the sample was taken. These sessions are broken into groupings of tissue taken on that date (in this case, breast tissue). A deidentified patient report stored as a flat text file is also available. Within these slides there are a total of 16,971 total annotated regions with an average of 4.84 annotations per slide. Among those annotations, 8,035 are non-cancerous (normal, background, null, and artifact,) 6,222 are carcinogenic signs (inflammation, nonneoplastic and suspicious,) and 2,714 are cancerous labels (ductal carcinoma in situ and invasive ductal carcinoma in situ.) The individual patients are split up into three sets: train, development, and evaluation. Of the 74 cancerous patients, 20 were allotted for both the development and evaluation sets, while the remain 34 were allotted for train. The remaining 222 patients were split up to preserve the overall distribution of labels within the corpus. This was done in hope of creating control sets for comparable studies. Overall, the development and evaluation sets each have 80 patients, while the training set has 136 patients. In a related component of this project, slides from the Fox Chase Cancer Center (FCCC) Biosample Repository (https://www.foxchase.org/research/facilities/genetic-research-facilities/biosample-repository -facility) are being digitized in addition to slides provided by Temple University Hospital. This data includes 18 different types of tissue including approximately 38.5% urinary tissue and 16.5% gynecological tissue. These slides and the metadata provided with them are already anonymized and include diagnoses in a spreadsheet with sample and patient ID. We plan to release over 13,000 unannotated slides from the FCCC Corpus simultaneously with v1.0.0 of TUDP. Details of this release will also be discussed in this poster. Few digitally annotated databases of pathology samples like TUDP exist due to the extensive data collection and processing required. The breast corpus subset should be released by November 2021. By December 2021 we should also release the unannotated FCCC data. We are currently annotating urinary tract data as well. We expect to release about 5,600 processed TUH slides in this subset. We have an additional 53,000 unprocessed TUH slides digitized. Corpora of this size will stimulate the development of a new generation of deep learning technology. In clinical settings where resources are limited, an assistive diagnoses model could support pathologists’ workload and even help prioritize suspected cancerous cases. ACKNOWLEDGMENTS This material is supported by the National Science Foundation under grants nos. CNS-1726188 and 1925494. Any opinions, findings, and conclusions or recommendations expressed in this material are those of the author(s) and do not necessarily reflect the views of the National Science Foundation. REFERENCES [1] N. Shawki et al., “The Temple University Digital Pathology Corpus,” in Signal Processing in Medicine and Biology: Emerging Trends in Research and Applications, 1st ed., I. Obeid, I. Selesnick, and J. Picone, Eds. New York City, New York, USA: Springer, 2020, pp. 67 104. https://www.springer.com/gp/book/9783030368432. [2] J. Picone, T. Farkas, I. Obeid, and Y. Persidsky, “MRI: High Performance Digital Pathology Using Big Data and Machine Learning.” Major Research Instrumentation (MRI), Division of Computer and Network Systems, Award No. 1726188, January 1, 2018 – December 31, 2021. https://www. isip.piconepress.com/projects/nsf_dpath/. [3] A. Gulati et al., “Conformer: Convolution-augmented Transformer for Speech Recognition,” in Proceedings of the Annual Conference of the International Speech Communication Association (INTERSPEECH), 2020, pp. 5036-5040. https://doi.org/10.21437/interspeech.2020-3015. [4] C.-J. Wu et al., “Machine Learning at Facebook: Understanding Inference at the Edge,” in Proceedings of the IEEE International Symposium on High Performance Computer Architecture (HPCA), 2019, pp. 331–344. https://ieeexplore.ieee.org/document/8675201. [5] I. Caswell and B. Liang, “Recent Advances in Google Translate,” Google AI Blog: The latest from Google Research, 2020. [Online]. Available: https://ai.googleblog.com/2020/06/recent-advances-in-google-translate.html. [Accessed: 01-Aug-2021]. [6] V. Khalkhali, N. Shawki, V. Shah, M. Golmohammadi, I. Obeid, and J. Picone, “Low Latency Real-Time Seizure Detection Using Transfer Deep Learning,” in Proceedings of the IEEE Signal Processing in Medicine and Biology Symposium (SPMB), 2021, pp. 1 7. https://www.isip. piconepress.com/publications/conference_proceedings/2021/ieee_spmb/eeg_transfer_learning/. [7] J. Picone, T. Farkas, I. Obeid, and Y. Persidsky, “MRI: High Performance Digital Pathology Using Big Data and Machine Learning,” Philadelphia, Pennsylvania, USA, 2020. https://www.isip.piconepress.com/publications/reports/2020/nsf/mri_dpath/. [8] I. Hunt, S. Husain, J. Simons, I. Obeid, and J. Picone, “Recent Advances in the Temple University Digital Pathology Corpus,” in Proceedings of the IEEE Signal Processing in Medicine and Biology Symposium (SPMB), 2019, pp. 1–4. https://ieeexplore.ieee.org/document/9037859. [9] A. P. Martinez, C. Cohen, K. Z. Hanley, and X. (Bill) Li, “Estrogen Receptor and Cytokeratin 5 Are Reliable Markers to Separate Usual Ductal Hyperplasia From Atypical Ductal Hyperplasia and Low-Grade Ductal Carcinoma In Situ,” Arch. Pathol. Lab. Med., vol. 140, no. 7, pp. 686–689, Apr. 2016. https://doi.org/10.5858/arpa.2015-0238-OA.« less
  2. It takes great effort to manually or semi-automatically convert free-text phenotype narratives (e.g., morphological descriptions in taxonomic works) to a computable format before they can be used in large-scale analyses. We argue that neither a manual curation approach nor an information extraction approach based on machine learning is a sustainable solution to produce computable phenotypic data that are FAIR (Findable, Accessible, Interoperable, Reusable) (Wilkinson et al. 2016). This is because these approaches do not scale to all biodiversity, and they do not stop the publication of free-text phenotypes that would need post-publication curation. In addition, both manual and machine learning approaches face great challenges: the problem of inter-curator variation (curators interpret/convert a phenotype differently from each other) in manual curation, and keywords to ontology concept translation in automated information extraction, make it difficult for either approach to produce data that are truly FAIR. Our empirical studies show that inter-curator variation in translating phenotype characters to Entity-Quality statements (Mabee et al. 2007) is as high as 40% even within a single project. With this level of variation, curated data integrated from multiple curation projects may still not be FAIR. The key causes of this variation have been identified as semantic vaguenessmore »in original phenotype descriptions and difficulties in using standardized vocabularies (ontologies). We argue that the authors describing characters are the key to the solution. Given the right tools and appropriate attribution, the authors should be in charge of developing a project's semantics and ontology. This will speed up ontology development and improve the semantic clarity of the descriptions from the moment of publication. In this presentation, we will introduce the Platform for Author-Driven Computable Data and Ontology Production for Taxonomists, which consists of three components: a web-based, ontology-aware software application called 'Character Recorder,' which features a spreadsheet as the data entry platform and provides authors with the flexibility of using their preferred terminology in recording characters for a set of specimens (this application also facilitates semantic clarity and consistency across species descriptions); a set of services that produce RDF graph data, collects terms added by authors, detects potential conflicts between terms, dispatches conflicts to the third component and updates the ontology with resolutions; and an Android mobile application, 'Conflict Resolver,' which displays ontological conflicts and accepts solutions proposed by multiple experts. a web-based, ontology-aware software application called 'Character Recorder,' which features a spreadsheet as the data entry platform and provides authors with the flexibility of using their preferred terminology in recording characters for a set of specimens (this application also facilitates semantic clarity and consistency across species descriptions); a set of services that produce RDF graph data, collects terms added by authors, detects potential conflicts between terms, dispatches conflicts to the third component and updates the ontology with resolutions; and an Android mobile application, 'Conflict Resolver,' which displays ontological conflicts and accepts solutions proposed by multiple experts. Fig. 1 shows the system diagram of the platform. The presentation will consist of: a report on the findings from a recent survey of 90+ participants on the need for a tool like Character Recorder; a methods section that describes how we provide semantics to an existing vocabulary of quantitative characters through a set of properties that explain where and how a measurement (e.g., length of perigynium beak) is taken. We also report on how a custom color palette of RGB values obtained from real specimens or high-quality specimen images, can be used to help authors choose standardized color descriptions for plant specimens; and a software demonstration, where we show how Character Recorder and Conflict Resolver can work together to construct both human-readable descriptions and RDF graphs using morphological data derived from species in the plant genus Carex (sedges). The key difference of this system from other ontology-aware systems is that authors can directly add needed terms to the ontology as they wish and can update their data according to ontology updates. a report on the findings from a recent survey of 90+ participants on the need for a tool like Character Recorder; a methods section that describes how we provide semantics to an existing vocabulary of quantitative characters through a set of properties that explain where and how a measurement (e.g., length of perigynium beak) is taken. We also report on how a custom color palette of RGB values obtained from real specimens or high-quality specimen images, can be used to help authors choose standardized color descriptions for plant specimens; and a software demonstration, where we show how Character Recorder and Conflict Resolver can work together to construct both human-readable descriptions and RDF graphs using morphological data derived from species in the plant genus Carex (sedges). The key difference of this system from other ontology-aware systems is that authors can directly add needed terms to the ontology as they wish and can update their data according to ontology updates. The software modules currently incorporated in Character Recorder and Conflict Resolver have undergone formal usability studies. We are actively recruiting Carex experts to participate in a 3-day usability study of the entire system of the Platform for Author-Driven Computable Data and Ontology Production for Taxonomists. Participants will use the platform to record 100 characters about one Carex species. In addition to usability data, we will collect the terms that participants submit to the underlying ontology and the data related to conflict resolution. Such data allow us to examine the types and the quantities of logical conflicts that may result from the terms added by the users and to use Discrete Event Simulation models to understand if and how term additions and conflict resolutions converge. We look forward to a discussion on how the tools (Character Recorder is online at http://shark.sbs.arizona.edu/chrecorder/public) described in our presentation can contribute to producing and publishing FAIR data in taxonomic studies.« less
  3. International collaboration between collections, aggregators, and researchers within the biodiversity community and beyond is becoming increasingly important in our efforts to support biodiversity, conservation and the life of the planet. The social, technical, logistical and financial aspects of an equitable biodiversity data landscape – from workforce training and mobilization of linked specimen data, to data integration, use and publication – must be considered globally and within the context of a growing biodiversity crisis. In recent years, several initiatives have outlined paths forward that describe how digital versions of natural history specimens can be extended and linked with associated data. In the United States, Webster (2017) presented the “extended specimen”, which was expanded upon by Lendemer et al. (2019) through the work of the Biodiversity Collections Network (BCoN). At the same time, a “digital specimen” concept was developed by DiSSCo in Europe (Hardisty 2020). Both the extended and digital specimen concepts depict a digital proxy of an analog natural history specimen, whose digital nature provides greater capabilities such as being machine-processable, linkages with associated data, globally accessible information-rich biodiversity data, improved tracking, attribution and annotation, additional opportunities for data use and cross-disciplinary collaborations forming the basis for FAIR (Findable, Accessible, Interoperable,more »Reproducible) and equitable sharing of benefits worldwide, and innumerable other advantages, with slight variation in how an extended or digital specimen model would be executed. Recognizing the need to align the two closely-related concepts, and to provide a place for open discussion around various topics of the Digital Extended Specimen (DES; the current working name for the joined concepts), we initiated a virtual consultation on the discourse platform hosted by the Alliance for Biodiversity Knowledge through GBIF. This platform provided a forum for threaded discussions around topics related and relevant to the DES. The goals of the consultation align with the goals of the Alliance for Biodiversity Knowledge: expand participation in the process, build support for further collaboration, identify use cases, identify significant challenges and obstacles, and develop a comprehensive roadmap towards achieving the vision for a global specification for data integration. In early 2021, Phase 1 launched with five topics: Making FAIR data for specimens accessible; Extending, enriching and integrating data; Annotating specimens and other data; Data attribution; and Analyzing/mining specimen data for novel applications. This round of full discussion was productive and engaged dozens of contributors, with hundreds of posts and thousands of views. During Phase 1, several deeper, more technical, or additional topics of relevance were identified and formed the foundation for Phase 2 which began in May 2021 with the following topics: Robust access points and data infrastructure alignment; Persistent identifier (PID) scheme(s); Meeting legal/regulatory, ethical and sensitive data obligations; Workforce capacity development and inclusivity; Transactional mechanisms and provenance; and Partnerships to collaborate more effectively. In Phase 2 fruitful progress was made towards solutions to some of these complex functional and technical long-term goals. Simultaneously, our commitment to open participation was reinforced, through increased efforts to involve new voices from allied and complementary fields. Among a wealth of ideas expressed, the community highlighted the need for unambiguous persistent identifiers and a dedicated agent to assign them, support for a fully linked system that includes robust publishing mechanisms, strong support for social structures that build trustworthiness of the system, appropriate attribution of legacy and new work, a system that is inclusive, removed from colonial practices, and supportive of creative use of biodiversity data, building a truly global data infrastructure, balancing open access with legal obligations and ethical responsibilities, and the partnerships necessary for success. These two consultation periods, and the myriad activities surrounding the online discussion, produced a wide variety of perspectives, strategies, and approaches to converging the digital and extended specimen concepts, and progressing plans for the DES -- steps necessary to improve access to research-ready data to advance our understanding of the diversity and distribution of life. Discussions continue and we hope to include your contributions to the DES in future implementation plans.« less
  4. Scientists who perform major survival surgery on laboratory animals face a dual welfare and methodological challenge: how to choose surgical anesthetics and post-operative analgesics that will best control animal suffering, knowing that both pain and the drugs that manage pain can all affect research outcomes. Scientists who publish full descriptions of animal procedures allow critical and systematic reviews of data, demonstrate their adherence to animal welfare norms, and guide other scientists on how to conduct their own studies in the field. We investigated what information on animal pain management a reasonably diligent scientist might find in planning for a successful experiment. To explore how scientists in a range of fields describe their management of this ethical and methodological concern, we scored 400 scientific articles that included major animal survival surgeries as part of their experimental methods, for the completeness of information on anesthesia and analgesia. The 400 articles (250 accepted for publication pre-2011, and 150 in 2014–15, along with 174 articles they reference) included thoracotomies, craniotomies, gonadectomies, organ transplants, peripheral nerve injuries, spinal laminectomies and orthopedic procedures in dogs, primates, swine, mice, rats and other rodents. We scored articles for Publication Completeness (PC), which was any mention of use ofmore »anesthetics or analgesics; Analgesia Use (AU) which was any use of post-surgical analgesics, and Analgesia Completeness (a composite score comprising intra-operative analgesia, extended post-surgical analgesia, and use of multimodal analgesia). 338 of 400 articles were PC. 98 of these 338 were AU, with some mention of analgesia, while 240 of 338 mentioned anesthesia only but not postsurgical analgesia. Journals’ caliber, as measured by their 2013 Impact Factor, had no effect on PC or AU. We found no effect of whether a journal instructs authors to consult the ARRIVE publishing guidelines published in 2010 on PC or AC for the 150 mouse and rat articles in our 2014–15 dataset. None of the 302 articles that were silent about analgesic use included an explicit statement that analgesics were withheld, or a discussion of how pain management or untreated pain might affect results. We conclude that current scientific literature cannot be trusted to present full detail on use of animal anesthetics and analgesics. We report that publication guidelines focus more on other potential sources of bias in experimental results, under-appreciate the potential for pain and pain drugs to skew data, PLOS ONE | DOI:10.1371/journal.pone.0155001 May 12, 2016 1 / 24 a11111 OPEN ACCESS Citation: Carbone L, Austin J (2016) Pain and Laboratory Animals: Publication Practices for Better Data Reproducibility and Better Animal Welfare. PLoS ONE 11(5): e0155001. doi:10.1371/journal. pone.0155001 Editor: Chang-Qing Gao, Central South University, CHINA Received: December 29, 2015 Accepted: April 22, 2016 Published: May 12, 2016 Copyright: © 2016 Carbone, Austin. This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Data Availability Statement: All relevant data are within the paper and its Supporting Information files. Authors may be contacted for further information. Funding: This study was funded by the United States National Science Foundation Division of Social and Economic Sciences. Award #1455838. The funder had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript. Competing Interests: The authors have declared that no competing interests exist. and thus mostly treat pain management as solely an animal welfare concern, in the jurisdiction of animal care and use committees. At the same time, animal welfare regulations do not include guidance on publishing animal data, even though publication is an integral part of the cycle of research and can affect the welfare of animals in studies building on published work, leaving it to journals and authors to voluntarily decide what details of animal use to publish. We suggest that journals, scientists and animal welfare regulators should revise current guidelines and regulations, on treatment of pain and on transparent reporting of treatment of pain, to improve this dual welfare and data-quality deficiency.« less
  5. The research data repository of the Environmental Data Initiative (EDI) is building on over 30 years of data curation research and experience in the National Science Foundation-funded US Long-Term Ecological Research (LTER) Network. It provides mature functionalities, well established workflows, and now publishes all ‘long-tail’ environmental data. High quality scientific metadata are enforced through automatic checks against community developed rules and the Ecological Metadata Language (EML) standard. Although the EDI repository is far along in making its data findable, accessible, interoperable, and reusable (FAIR), representatives from EDI and the LTER are developing best practices for the edge cases in environmental data publishing. One of these is the vast amount of imagery taken in the context of ecological research, ranging from wildlife camera traps to plankton imaging systems to aerial photography. Many images are used in biodiversity research for community analyses (e.g., individual counts, species cover, biovolume, productivity), while others are taken to study animal behavior and landscape-level change. Some examples from the LTER Network include: using photos of a heron colony to measure provisioning rates for chicks (Clarkson and Erwin 2018) or identifying changes in plant cover and functional type through time (Peters et al. 2020). Multi-spectral images are employedmore »to identify prairie species. Underwater photo quads are used to monitor changes in benthic biodiversity (Edmunds 2015). Sosik et al. (2020) used a continuous Imaging FlowCytobot to identify and measure phyto- and microzooplankton. Cameras at McMurdo Dry Valleys assess snow and ice cover on Antarctic lakes allowing estimation of primary production (Myers 2019). It has been standard practice to publish numerical data extracted from images in EDI; however, the supporting imagery generally has not been made publicly available. Our goal in developing best practices for documenting and archiving these images is for them to be discovered and re-used. Our examples demonstrate several issues. The research questions, and hence, the image subjects are variable. Images frequently come in logical sets of time series. The size of such sets can be large and only some images may be contributed to a dedicated specialized repository. Finally, these images are taken in a larger monitoring context where many other environmental data are collected at the same time and location. Currently, a typical approach to publishing image data in EDI are packages containing compressed (ZIP or tar) files with the images, a directory manifest with additional image-specific metadata, and a package-level EML metadata file. Images in the compressed archive may be organized within directories with filenames corresponding to treatments, locations, time periods, individuals, or other grouping attributes. Additionally, the directory manifest table has columns for each attribute. Package-level metadata include standard coverage elements (e.g., date, time, location) and sampling methods. This approach of archiving logical ‘sets’ of images reduces the effort of providing metadata for each image when most information would be repeated, but at the expense of not making every image individually searchable. The latter may be overcome if the provided manifest contains standard metadata that would allow searching and automatic integration with other images.« less