skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Parallel or Intersecting Lines? Intelligent Bibliometrics for Investigating the Involvement of Data Science in Policy Analysis
Efforts to involve data science in policy analysis can be traced back decades but transforming analytic findings into decisions is still a far from straightforward task. Data-driven decision-making requires understanding approaches, practices, and research results from many disciplines, which makes it interesting to investigate whether data science and policy analysis are moving in parallel or whether their pathways have intersected. Our investigation, from a bibliometric perspective, is driven by a comprehensive set of research questions, and we have designed an intelligent bibliometric framework that includes a series of traditional bibliometric approaches and a novel method of charting the evolutionary pathways of scientific innovation, which is used to identify predecessor-descendant relationships in technological topics. Our investigation reveals that data science and policy analysis have intersecting lines, and it can foresee that a cross-disciplinary direction in which policy analysis interacting with data science has become an emergent area in both communities. However, equipped with advanced data analytic techniques, data scientists are moving faster and further than policy analysts. The empirical insights derived from our research should be beneficial to academic researchers and journal editors in related research communities, as well as policy-makers in research institutions and funding agencies.  more » « less
Award ID(s):
1759960
PAR ID:
10208459
Author(s) / Creator(s):
; ; ; ;
Date Published:
Journal Name:
IEEE Transactions on Engineering Management
ISSN:
0018-9391
Page Range / eLocation ID:
1 to 13
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Studies on human mobility have a long history with increasingly strong interdisciplinary connections across social science, environmental science, information and technology, computer science, engineering, and health science. However, what is lacking in the current research is a synthesis of the studies to identify the evolutional pathways and future research directions. To address this gap, we conduct a systematic review of human mobility-related studies published from 1990 to 2020. Drawing on the selected publications retrieved from the Web of Science, we provide a bibliometric analysis and network visualisation using CiteSpace and VOSviewer on the number of publications and year published, authors and their countries and afflictions, citations, topics, abstracts, keywords, and journals. Our findings show that human mobility-related studies have become increasingly interdisciplinary and multi-dimensional, which have been strengthened by the use of the so-called ‘big data’ from multiple sources, the development of computer technologies, the innovation of modelling approaches, and the novel applications in various areas. Based on our synthesis of the work by top cited authors we identify four directions for future research relating to data sources, modelling methods, applications, and technologies. We advocate for more in-depth research on human mobility using multi-source big data, improving modelling methods and integrating advanced technologies including artificial intelligence, and machine and deep learning to address real-world problems and contribute to social good. 
    more » « less
  2. Globally, coastal zones, rivers and riverine areas, and deltas carry enormous values for ecosystems, socio-economic, and environmental perspectives. These often highly populated areas are generally significantly different from interior hinterlands in terms of population density, economic activities, and geophysical and ecological processes. Geospatial technologies are widely used by scholars from multiple disciplines to understand the dynamic nature of shoreline changes globally. In this paper, we conduct a systematic literature review to identify and interpret research patterns and themes related to shoreline change detection from 2000 to 2021. Two databases, Web of Science and Scopus, were used to identify articles that investigate shoreline change analysis using geospatial technique such as remote sensing and GIS analysis capabilities (e.g., the Digital Shoreline Analysis System (DSAS). Between the years 2000 and 2021, we initially found 1622 articles, which were inspected for suitability, leading to a final set of 905 articles for bibliometric analysis. For systematic analysis, we used Rayyan—a web-based platform used for screening literature. For bibliometric network analysis, we used the CiteSpace, Rayyan, and VOSviewer software. The findings of this study indicate that the majority of the literature originated in the USA, followed by India. Given the importance of protecting the communities living in the riverine areas, coastal zones, and delta regions, it is necessary to ask new research questions and apply cutting-edge tools and technology, such as machine learning approach and GeoAI, to fill the research gaps on shoreline change analysis. Such approaches could include, but are not limited to, centimeter level accuracy with high-resolution satellite imagery, the use of unmanned aerial vehicles (UAV), and point cloud data for both local and global level shoreline change and analysis. 
    more » « less
  3. null (Ed.)
    This part of the review aims to reduce the start-up burden of data collection and descriptive analytics for statistical modeling and route optimization of risk associated with motor vehicles. From a data-driven bibliometric analysis, we show that the literature is divided into two disparate research streams: (a) predictive or explanatory models that attempt to understand and quantify crash risk based on different driving conditions, and (b) optimization techniques that focus on minimizing crash risk through route/path-selection and rest-break scheduling. Translation of research outcomes between these two streams is limited. To overcome this issue, we present publicly available high-quality data sources (different study designs, outcome variables, and predictor variables) and descriptive analytic techniques (data summarization, visualization, and dimension reduction) that can be used to achieve safer-routing and provide code to facilitate data collection/exploration by practitioners/researchers. Then, we review the statistical and machine learning models used for crash risk modeling. We show that (near) real-time crash risk is rarely considered, which might explain why the optimization models (reviewed in Part 2) have not capitalized on the research outcomes from the first stream. 
    more » « less
  4. Topic extraction presents challenges for the bibliometric community, and its performance still depends on human intervention and its practical areas. This paper proposes a novel kernel k-means clustering method incorporated with a word embedding model to create a solution that effectively extracts topics from bibliometric data. The experimental results ofa comparison of this method with four clustering baselines (i.e., k-means, fuzzy c-means, principal component analysis, and topic models) on two bibliometric datasets demonstrate its effectiveness across either a relatively broad range of disciplines or a given domain. An empirical study on bibliometric topic extraction from articles published by three top-tier bibliometric journals between 2000 and 2017, supported by expert knowledge-based evaluations, provides supplemental evidence of the method’s ability on topic extraction. Additionally, this empirical analysis reveals insights into both overlapping and diverse research interests among the three journals that would benefit journal publishers, editorial boards, and research communities. 
    more » « less
  5. The vast and rapidly growing amount of science education research makes it challenging for researchers to navigate and synthesize developments across the field, particularly concerning broad concepts evolving along divergent paths. To address this issue, a novel review methodology employing bibliometrics and network analysis was tested to identify and characterize clusters of research focused on the relationship between school‐based science learning and contexts where that science is applied, experienced, observable, or otherwise relevant (e.g., socio‐scientific inquiry, place‐based learning, culturally‐responsive pedagogy). Using a sample of 935 academic papers, the bibliometric network analysis revealed the landscape of contextualized science learning research, identifying 13 distinct clusters of scholarship. Bibliometric and qualitative data were used to describe the research trends within clusters and confirm they were conceptually meaningful and distinct. This methodology facilitated greater understanding of how research can become clustered into “invisible colleges” over time, offering a synthesis approach to grasp interrelated lines of research within an evolving landscape. The methodology has potential to identify other schools of thought or overarching themes in science education, enhancing researchers’ ability to perceive the field as a coherent landscape of interconnected ideas or to identify specific research trajectories within a broad concept. 
    more » « less