skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Spatiotemporal Patterns and Driving Factors on Crime Changing During Black Lives Matter Protests
The death of George Floyd has brought a new wave of 2020 Black Lives Matter (BLM) protests into U.S. cities. Protests happened in a few cities accompanied by reports of violence over the first few days. The protests appear to be related to rising crime. This study uses newly collected crime data in 50 U.S. cities/counties to explore the spatiotemporal crime changes under BLM protests and to estimate the driving factors of burglary induced by the BLM protest. Four spatial and statistic models were used, including the Average Nearest Neighbor (ANN), Hotspot Analysis, Least Absolute Shrinkage, and Selection Operator (LASSO), and Binary Logistic Regression. The results show that (1) crime, especially burglary, has risen sharply in a few cities/counties, yet heterogeneity exists across cities/counties; (2) the volume and spatial distribution of certain crime types changed under BLM protest, the activity of burglary clustered in certain regions during protests period; (3) education, race, demographic, and crime rate in 2019 are related with burglary changes during BLM protests. The findings from this study can provide valuable information for ensuring the capabilities of the police and governmental agencies to deal with the evolving crisis.  more » « less
Award ID(s):
1835507 2027521 1841520
PAR ID:
10208495
Author(s) / Creator(s):
; ; ; ; ; ; ;
Date Published:
Journal Name:
ISPRS International Journal of Geo-Information
Volume:
9
Issue:
11
ISSN:
2220-9964
Page Range / eLocation ID:
640
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. This study examines how the relationship between social media discourse and offline confrontations in social movements, focusing on the Black Lives Matter (BLM) protests following George Floyd's death in 2020. While social media's role in facilitating social movements is well-documented, its relationship with offline confrontations remains understudied. To bridge this gap, we curated a dataset comprising 108,443 Facebook posts and 1,406 offline BLM protest events. Our analysis categorized online media framing into consonance (alignment) and dissonance (misalignment) with the perspectives of different involved parties. Our findings indicate a reciprocal relationship between online activism support and offline confrontational occurrences. Online support for the BLM, in particular, was associated with less property damage and fewer confrontational protests in the days that followed. Conversely, offline confrontations amplified online support for the protesters. By illuminating this dynamic, we highlight the multifaceted influence of social media on social movements. Not only does it serve as a platform for information dissemination and mobilization but also plays a pivotal role in shaping public discourse about offline confrontations. 
    more » « less
  2. Topaz, Chad M (Ed.)
    Ukraine’s tug-of-war between Russia and the West has had significant and lasting consequences for the country. In 2013, Viktor Yanukovych, the Ukrainian president aligned with Russia, opted against signing an association agreement with the European Union. This agreement aimed to facilitate trade and travel between the EU and Ukraine. This decision sparked widespread protests that coalesced in Kyiv’s Maidan Square, eventually becoming known as the Euromaidan protests. In this study, we analyze the protest data from 2013, sourced from Ukraine’s Center for Social and Labor Research. Despite the dataset’s limitations and occasional inconsistencies, we demonstrate the extraction of valuable insights and the construction of a descriptive model from such data. Our investigation reveals a pre-existing state of self-excitation within the system even before the onset of the Euromaidan protests. This self-excitation intensified during the Euromaidan protests. A statistical analysis indicates that the government’s utilization of force correlates with increased future protests, exacerbating rather than quelling the protest movement. Furthermore, we introduce the implementation of Hawkes process models to comprehend the spatiotemporal dynamics of the protest activity. Our findings highlight that, while protest activities spread across the entire country, the driving force behind the dynamics of these protests was the level of activity in Kyiv. Furthermore, in contrast to prior research that emphasized geographical proximity as a key predictor of event propagation, our study illustrates that the political alignment among oblasts, which are the distinct municipalities comprising Ukraine, had a more profound impact than mere geographic distance. This underscores the significance of social and cultural factors in molding the trajectory of political movements. 
    more » « less
  3. Protest event analysis is an important method for the study of collective action and social movements and typically draws on traditional media reports as the data source. We introduce collective action from social media (CASM)—a system that uses convolutional neural networks on image data and recurrent neural networks with long short-term memory on text data in a two-stage classifier to identify social media posts about offline collective action. We implement CASM on Chinese social media data and identify more than 100,000 collective action events from 2010 to 2017 (CASM-China). We evaluate the performance of CASM through cross-validation, out-of-sample validation, and comparisons with other protest data sets. We assess the effect of online censorship and find it does not substantially limit our identification of events. Compared to other protest data sets, CASM-China identifies relatively more rural, land-related protests and relatively few collective action events related to ethnic and religious conflict. 
    more » « less
  4. null (Ed.)
    Larger protests are more likely to lead to policy changes than small ones are, but whether or not attendance estimates provided in news or generated from social media are biased is an open question. This letter closes the question: news and geolocated social media data generate accurate estimates of protest size variation. This claim is substantiated using cellphone location data from more than 10 million individuals during the 2017 United States Women’s March protests. These cellphone estimates correlate strongly with those provided in news media as well as three size estimates generated using geolocated tweets, one text-based and two based on images. Inferences about protest attendance from these estimates match others’ findings about the Women’s March. 
    more » « less
  5. The study of white-collar crime has evolved over the past eight decades. So too has the nature of white-collar crime. Varieties of white-collar crime have changed as the types of occupations evolved. One change in the occupational arena that has likely impacted white-collar crime involves technological changes. In particular, with the advent of the computer, new opportunities for crime have developed within the workplace and outside of it. Few studies, however, have explored cybercrime within a white-collar crime framework. To address this void in the literature, in this study, a sample of 109 cases investigated by the U.S. Department of Justice are reviewed in order to determine how these cybercrimes can be characterized as white-collar crimes. 
    more » « less