skip to main content

Title: Host relatedness and landscape connectivity shape pathogen spread in the puma, a large secretive carnivore
Abstract

Urban expansion can fundamentally alter wildlife movement and gene flow, but how urbanization alters pathogen spread is poorly understood. Here, we combine high resolution host and viral genomic data with landscape variables to examine the context of viral spread in puma (Puma concolor) from two contrasting regions: one bounded by the wildland urban interface (WUI) and one unbounded with minimal anthropogenic development (UB). We found landscape variables and host gene flow explained significant amounts of variation of feline immunodeficiency virus (FIV) spread in the WUI, but not in the unbounded region. The most important predictors of viral spread also differed; host spatial proximity, host relatedness, and mountain ranges played a role in FIV spread in the WUI, whereas roads might have facilitated viral spread in the unbounded region. Our research demonstrates how anthropogenic landscapes can alter pathogen spread, providing a more nuanced understanding of host-pathogen relationships to inform disease ecology in free-ranging species.

Authors:
; ; ; ; ; ; ; ; ; ; ; ; ; ; ;
Publication Date:
NSF-PAR ID:
10208583
Journal Name:
Communications Biology
Volume:
4
Issue:
1
ISSN:
2399-3642
Publisher:
Nature Publishing Group
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    Host competence, or how well an individual transmits pathogens, varies substantially within and among animal populations. As this variation can alter the course of epidemics and epizootics, revealing its underlying causes will help predict and control the spread of disease. One host trait that could drive heterogeneity in competence is host tolerance, which minimizes fitness losses during infection without decreasing pathogen load. In many cases, tolerance should increase competence by extending infectious periods and enabling behaviors that facilitate contact among hosts. However, we argue that the links between tolerance and competence are more varied. Specifically, the different physiological andmore »behavioral mechanisms by which hosts achieve tolerance should have a range of effects on competence, enhancing the ability to transmit pathogens in some circumstances and impeding it in others. Because tissue-based pathology (damage) that reduces host fitness is often critical for pathogen transmission, we focus on two mechanisms that can underlie tolerance at the tissue level: damage-avoidance and damage-repair. As damage-avoidance reduces transmission-enhancing pathology, this mechanism is likely to decrease host competence and pathogen transmission. In contrast, damage-repair does not prevent transmission-relevant pathology from occurring. Rather, damage-repair provides new, healthy tissues that pathogens can exploit, likely extending the infectious period and increasing host competence. We explore these concepts through graphical models and present three disease systems in which damage-avoidance and damage-repair alter host competence in the predicted directions. Finally, we suggest that by incorporating these links, future theoretical studies could provide new insights into infectious disease dynamics and host–pathogen coevolution.

    « less
  2. Anthropogenic landscape modification such as urbanization can expose wildlife to toxicants, with profound behavioural and health effects. Toxicant exposure can alter the local transmission of wildlife diseases by reducing survival or altering immune defence. However, predicting the impacts of pathogens on wildlife across their ranges is complicated by heterogeneity in toxicant exposure across the landscape, especially if toxicants alter wildlife movement from toxicant-contaminated to uncontaminated habitats. We developed a mechanistic model to explore how toxicant effects on host health and movement propensity influence range-wide pathogen transmission, and zoonotic exposure risk, as an increasing fraction of the landscape is toxicant-contaminated. Whenmore »toxicant-contaminated habitat is scarce on the landscape, costs to movement and survival from toxicant exposure can trap infected animals in contaminated habitat and reduce landscape-level transmission. Increasing the proportion of contaminated habitat causes host population declines from combined effects of toxicants and infection. The onset of host declines precedes an increase in the density of infected hosts in contaminated habitat and thus may serve as an early warning of increasing potential for zoonotic spillover in urbanizing landscapes. These results highlight how sublethal effects of toxicants can determine pathogen impacts on wildlife populations that may not manifest until landscape contamination is widespread.« less
  3. Abstract

    Pumas are the most widely distributed felid in the Western Hemisphere. Increasingly, however, human persecution and habitat loss are isolating puma populations. To explore the genomic consequences of this isolation, we assemble a draft puma genome and a geographically broad panel of resequenced individuals. We estimate that the lineage leading to present-day North American pumas diverged from South American lineages 300–100 thousand years ago. We find signatures of close inbreeding in geographically isolated North American populations, but also that tracts of homozygosity are rarely shared among these populations, suggesting that assisted gene flow would restore local genetic diversity. Themore »genome of a Florida panther descended from translocated Central American individuals has long tracts of homozygosity despite recent outbreeding. This suggests that while translocations may introduce diversity, sustaining diversity in small and isolated populations will require either repeated translocations or restoration of landscape connectivity. Our approach provides a framework for genome-wide analyses that can be applied to the management of similarly small and isolated populations.

    « less
  4. Abstract

    Clavibacteris an agriculturally important bacterial genus comprising nine host-specific species/subspecies includingC. nebraskensis(Cn), which causes Goss's wilt and blight of maize. A robust, simple, and field-deployable method is required to specifically detectCnin infected plants and distinguish it from otherClavibacterspecies for quarantine purposes and timely disease management. A multiplex Recombinase Polymerase Amplification (RPA) coupled with a Lateral Flow Device (LFD) was developed for sensitive and rapid detection ofClavibacterandCndirectly from infected host. Unique and conserved genomic regions, the ABC transporter ATP-binding protein CDS/ABC-transporter permease and the MFS transporter gene, were used to design primers/probes for specific detection of genusClavibacterandCn,respectively. The assay wasmore »evaluated using 52 strains, representing all nine species/subspecies ofClavibacter,other closely related bacterial species, and naturally- and artificially-infected plant samples; no false positives or negatives were detected. The RPA reactions were also incubated in a closed hand at body temperature; results were again specific. The assay does not require DNA isolation and can be directly performed using host sap. The detection limit of 10 pg (~ 3000 copies) and 100 fg (~ 30 copies) was determined forClavibacter- andCn-specific primers/probes, respectively. The detection limit forCn-specific primer/probe set was decreased to 1 pg (~ 300 copies) when 1 µL of host sap was added into the RPA reaction containing tenfold serially diluted genomic DNA; though no effect was observed onClavibacter-specific primer/probe set. The assay is accurate and has applications at point-of-need diagnostics. This is the first multiplex RPA assay for any plant pathogen.

    « less
  5. Abstract

    We use mathematical modelling to examine how microbial strain communities are structured by the host specialisation traits and antigenic relationships of their members. The model is quite general and broadly applicable, but we focus onBorrelia burgdorferi, the Lyme disease bacterium, transmitted by ticks to mice and birds. In this system, host specialisation driven by the evasion of innate immunity has been linked to multiple niche polymorphism, while antigenic differentiation driven by the evasion of adaptive immunity has been linked to negative frequency dependence. Our model is composed of two host species, one vector, and multiple co-circulating pathogen strains thatmore »vary in their host specificity and their antigenic distances from one another. We explore the conditions required to maintain pathogen diversity. We show that the combination of host specificity and antigenic differentiation creates an intricate niche structure. Unequivocal rules that relate the stability of a strain community directly to the trait composition of its members are elusive. However, broad patterns are evident. When antigenic differentiation is weak, stable communities are typically composed entirely of generalists that can exploit either host species equally well. As antigenic differentiation increases, more diverse stable communities emerge, typically around trait compositions of generalists, generalists and very similar specialists, and specialists roughly balanced between the two host species.

    « less